A binned likelihood for stochastic models

被引:38
作者
Arguelles, C. A. [1 ]
Schneider, A. [2 ,3 ]
Yuan, T. [2 ,3 ]
机构
[1] MIT, Dept Phys, Cambridge, MA 02139 USA
[2] Univ Wisconsin, Dept Phys, 1150 Univ Ave, Madison, WI 53706 USA
[3] Univ Wisconsin, Wisconsin IceCube Particle Astrophys Ctr, Madison, WI 53706 USA
基金
美国国家科学基金会;
关键词
Event-by-event fluctuation; Neutrino Detectors and Telescopes (experiments); Unfolding;
D O I
10.1007/JHEP06(2019)030
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
Metrics of model goodness-of-fit, model comparison, and model parameter estimation are the main categories of statistical problems in science. Bayesian and frequentist methods that address these questions often rely on a likelihood function, which is the key ingredient in order to assess the plausibility of model parameters given observed data. In some complex systems or experimental setups, predicting the outcome of a model cannot be done analytically, and Monte Carlo techniques are used. In this paper, we present a new analytic likelihood that takes into account Monte Carlo uncertainties, appropriate for use in the large and small sample size limits. Our formulation performs better than semi-analytic methods, prevents strong claims on biased statements, and provides improved coverage properties compared to available methods.
引用
收藏
页数:18
相关论文
共 19 条
[11]  
Cowan G., 1998, STAT DATA ANAL
[12]  
Cranmer K., 2012, Technical Report No. CERN-OPEN-2012-016
[13]  
Fink D., 1997, COMPENDIUM CONJUGATE
[14]   emcee: The MCMC Hammer [J].
Foreman-Mackey, Daniel ;
Hogg, David W. ;
Lang, Dustin ;
Goodman, Jonathan .
PUBLICATIONS OF THE ASTRONOMICAL SOCIETY OF THE PACIFIC, 2013, 125 (925) :306-312
[15]   Exploring theory space with Monte Carlo reweighting [J].
Gainer, James S. ;
Lykken, Joseph ;
Matchev, Konstantin T. ;
Mrenna, Stephen ;
Park, Myeonghun .
JOURNAL OF HIGH ENERGY PHYSICS, 2014, (10)
[16]   Probabilistic treatment of the uncertainty from the finite size of weighted Monte Carlo data [J].
Gluesenkamp, Thorsten .
EUROPEAN PHYSICAL JOURNAL PLUS, 2018, 133 (06)
[17]  
Lyons L., 1986, STAT NUCL PARTICLE P
[19]  
T2K collaboration, 2018, Phys. Rev. D, V98