Experimental robust synchronization of hyperchaotic circuits

被引:59
作者
Buscarino, A. [2 ]
Fortuna, L. [1 ,2 ]
Frasca, M. [1 ,2 ]
机构
[1] Univ Catania, Dipartimento Ingn Elettr Elettron & Sistemi, Fac Ingn, I-95125 Catania, Italy
[2] Univ Catania, Lab Sistemi Complessi, Scuola Super Catania, I-95125 Catania, Italy
关键词
Hyperchaos; Nonlinear dynamics; Synchronization; Robustness; Nonlinear circuits; CHAOTIC SYSTEMS; SIGNAL;
D O I
10.1016/j.physd.2009.06.021
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Even if complete synchronization between two chaotic circuits can be reached only when the systems are identical, in this paper we address the robustness of synchronization in the presence of parameter mismatches between the coupled circuits in the case of hyperchaotic behavior. In particular. a master-slave scheme based on negative feedback [T. Kapitaniak, Synchronization of chaos using continuous control, Phys. Rev. E 50 (1994) 1642-1644] is considered and the strategy to design the slave system as an observer of the master is given. With the proposed approach, based on the concept of the Master Stability Function, the two circuits are coupled through a unique scalar signal. Experimental results obtained from two hyperchaotic circuits will be presented in order to show that synchronization occurs widely in the range of electronic component tolerances. (C) 2009 Elsevier B.V. All rights reserved.
引用
收藏
页码:1917 / 1922
页数:6
相关论文
共 19 条
[1]   SYNCHRONIZATION OF CHAOTIC ORBITS - THE EFFECT OF A FINITE-TIME STEP [J].
AMRITKAR, RE ;
GUPTE, N .
PHYSICAL REVIEW E, 1993, 47 (06) :3889-3895
[2]   Separation and synchronization of piecewise linear chaotic systems [J].
Arena, Paolo ;
Buscarino, Arturo ;
Fortuna, Luigi ;
Frasca, Mattia .
PHYSICAL REVIEW E, 2006, 74 (02)
[3]   The synchronization of chaotic systems [J].
Boccaletti, S ;
Kurths, J ;
Osipov, G ;
Valladares, DL ;
Zhou, CS .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2002, 366 (1-2) :1-101
[4]   Separation and synchronization of chaotic signals by optimization [J].
Buscarino, Arturo ;
Fortuna, Luigi ;
Frasca, Mattia .
PHYSICAL REVIEW E, 2007, 75 (01)
[5]   Experimental synchronization of single-transistor-based chaotic circuits [J].
Fortuna, Luigi ;
Frasca, Mattia .
CHAOS, 2007, 17 (04)
[6]   Nonlinear observer design to synchronize hyperchaotic systems via a scalar signal [J].
Grassi, G ;
Mascolo, S .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-FUNDAMENTAL THEORY AND APPLICATIONS, 1997, 44 (10) :1011-1014
[7]  
GUEMEZ J, 1995, PHYS REV E, V52, pR2145
[8]   SYNCHRONIZATION OF CHAOS USING CONTINUOUS CONTROL [J].
KAPITANIAK, T .
PHYSICAL REVIEW E, 1994, 50 (02) :1642-1644
[9]   GENERAL-APPROACH FOR CHAOTIC SYNCHRONIZATION WITH APPLICATIONS TO COMMUNICATION [J].
KOCAREV, L ;
PARLITZ, U .
PHYSICAL REVIEW LETTERS, 1995, 74 (25) :5028-5031
[10]  
Manganaro G., 1999, Cellular Neural Networks: Chaos, Complexity and VLSI Processing