All-fibre wavefront sensor

被引:3
作者
Wright, T. A. [1 ]
Yerolatsitis, S. [1 ,3 ]
Harrington, K. [1 ]
Harris, R. J. [2 ]
Birks, T. A. [1 ]
机构
[1] Univ Bath, Ctr Photon & Photon Mat, Dept Phys, Bath BA2 7AY, Avon, England
[2] Max Planck Inst Astron, Konigstuhl 17, D-69117 Heidelberg, Germany
[3] Univ Cent Florida, CREOL, Coll Opt & Photon, Orlando, FL 32816 USA
基金
欧盟地平线“2020”;
关键词
instrumentation: adaptive optics; ADAPTIVE-OPTICS; COMPENSATION;
D O I
10.1093/mnras/stac1658
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We report on a tapered three-core optical fibre that can be used as a tip-tilt wavefront sensor. In this device, a coupled region of a few millimetres at the sensing tip of the fibre converts fragile phase information from an incoming wavefront into robust intensity information within each of the cores. The intensity information can be easily converted to linear wavefront error over small ranges, making it ideal for closed loop systems. The sensor uses minimal information to infer tip-tilt and is compatible with remote detector arrays. We explore its application within adaptive optics and present a validation case to show its applicability to astronomy.
引用
收藏
页码:5422 / 5428
页数:7
相关论文
共 32 条
  • [1] Adaptive optics: principles and applications in ophthalmology
    Akyol, Engin
    Hagag, Ahmed M.
    Sivaprasad, Sobha
    Lotery, Andrew J.
    [J]. EYE, 2021, 35 (01) : 244 - 264
  • [2] The photonic lantern
    Birks, T. A.
    Gris-Sanchez, I.
    Yerolatsitis, S.
    Leon-Saval, S. G.
    Thomson, R. R.
    [J]. ADVANCES IN OPTICS AND PHOTONICS, 2015, 7 (02): : 107 - 167
  • [3] Adaptive optical microscopy: the ongoing quest for a perfect image
    Booth, Martin J.
    [J]. LIGHT-SCIENCE & APPLICATIONS, 2014, 3 : e165 - e165
  • [4] A giant planet candidate near a young brown dwarf - Direct VLT/NACO observations using IR wavefront sensing
    Chauvin, G
    Lagrange, AM
    Dumas, C
    Zuckerman, B
    Mouillet, D
    Song, I
    Beuzit, JL
    Lowrance, P
    [J]. ASTRONOMY & ASTROPHYSICS, 2004, 425 (02) : L29 - L32
  • [5] Wavefront sensing using a photonic lantern
    Corrigan, Mark
    Harris, Robert J.
    Thomson, Robert R.
    MacLachlan, David G.
    Allington-Smith, Jeremy
    Myers, Richard
    Morris, Tim
    [J]. ADAPTIVE OPTICS SYSTEMS V, 2016, 9909
  • [6] Demonstration of a photonic lantern low order wavefront sensor using an adaptive optics testbed
    Corrigan, Mark K.
    Morris, Timothy J.
    Harris, Robert J.
    Anagnos, Theodoros
    [J]. ADAPTIVE OPTICS SYSTEMS VI, 2018, 10703
  • [7] Photonic lantern tip/tilt detector for adaptive optics systems
    Cruz-Delgado, Daniel
    Alvarado-Zacarias, Juan Carlos
    Cooper, Matthew A.
    Wittek, Steffen
    Dobias, Caleb
    Martinez-Mercado, Julian
    Antonio-Lopez, Jose E.
    Fontaine, Nicolas K.
    Amezcua-Correa, Rodrigo
    [J]. OPTICS LETTERS, 2021, 46 (13) : 3292 - 3295
  • [8] Remote sensing with intense filaments enhanced by adaptive optics
    Daigle, J. -F.
    Kamali, Y.
    Chateauneuf, M.
    Tremblay, G.
    Theberge, F.
    Dubois, J.
    Roy, G.
    Chin, S. L.
    [J]. APPLIED PHYSICS B-LASERS AND OPTICS, 2009, 97 (03): : 701 - 713
  • [9] Adaptive Optics for Astronomy
    Davies, Richard
    Kasper, Markus
    [J]. ANNUAL REVIEW OF ASTRONOMY AND ASTROPHYSICS, VOL 50, 2012, 50 : 305 - 351
  • [10] Printed freeform lens arrays on multi-core fibers for highly efficient coupling in astrophotonic systems
    Dietrich, Philipp-Immanuel
    Harris, Robert J.
    Blaicher, Matthias
    Corrigan, Mark K.
    Morris, Tim M.
    Freude, Wolfgang
    Quirrenbach, Andreas
    Koos, Christian
    [J]. OPTICS EXPRESS, 2017, 25 (15): : 18288 - 18295