A Data-driven Energy Estimation based on the Mixture of Experts Method for Battery Electric Vehicles

被引:1
|
作者
Petersen, Patrick [1 ]
Rudolf, Thomas [1 ]
Sax, Eric [1 ]
机构
[1] FZI Res Ctr Informat Technol, Haid & Neu Str 10-14, D-76131 Karlsruhe, Germany
关键词
Battery Electric Vehicle; Energy Estimation; Machine Learning;
D O I
10.5220/0011081000003191
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Battery electric vehicles (BEVs) are an immediate solution to the reduction of greenhouse gas emissions. However, BEVs are limited in their range by the battery capacity. An accurate estimation of BEV's range and its energy consumption have become a significant factor in eliminating customers "range anxiety". To overcome range anxiety, advanced algorithms can predict the remaining capacity, estimate the range and inform the driver. Algorithms need to consider various influencing factors for their range estimation. A crucial part for an accurate range estimation is the energy consumption modeling itself. Thus, machine learning-based approaches are highly investigated which are able to learn nonlinear relations between relevant features and the energy consumption. In this paper, we propose a data-driven approach for the energy estimation of BEVs by utilizing ensemble learning to achieve a feature-specific estimation. In this paper, we trained neural networks on different road types independently. We improve the overall estimation by combining models via the mixture of experts method compared to a monolithic trained neural network. The results demonstrate that specialized neural networks for the energy estimation of BEVs are beneficial for the energy estimation. This approach contributes to reducing range anxiety and therefore helping toward elevated adoption of BEVs.
引用
收藏
页码:384 / 390
页数:7
相关论文
共 50 条
  • [1] Data-driven probabilistic energy consumption estimation for battery electric vehicles with model uncertainty
    Maity, Ayan
    Sarkar, Sudeshna
    INTERNATIONAL JOURNAL OF GREEN ENERGY, 2024, 21 (09) : 1986 - 2003
  • [2] Data-Driven Ohmic Resistance Estimation of Battery Packs for Electric Vehicles
    Liang, Kaizhi
    Zhang, Zhaosheng
    Liu, Peng
    Wang, Zhenpo
    Jiang, Shangfeng
    ENERGIES, 2019, 12 (24)
  • [3] Robust Data-Driven Battery State of Charge Estimation for Hybrid Electric Vehicles
    Feraco, Stefano
    Anselma, Pier Giuseppe
    Bonfitto, Angelo
    Kollmeyer, Phillip J.
    SAE INTERNATIONAL JOURNAL OF ELECTRIFIED VEHICLES, 2022, 11 (02): : 213 - 230
  • [4] A Practical Data-Driven Battery State-of-Health Estimation for Electric Vehicles
    Rahimian, Saeed Khaleghi
    Tang, Yifan
    IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2023, 70 (02) : 1973 - 1982
  • [5] A Data-Driven LiFePO4 Battery Capacity Estimation Method Based on Cloud Charging Data from Electric Vehicles
    Zhou, Xingyu
    Han, Xuebing
    Wang, Yanan
    Lu, Languang
    Ouyang, Minggao
    BATTERIES-BASEL, 2023, 9 (03):
  • [6] Data-driven prediction of battery failure for electric vehicles
    Zhao, Jingyuan
    Ling, Heping
    Wang, Junbin
    Burke, Andrew F.
    Lian, Yubo
    ISCIENCE, 2022, 25 (04)
  • [7] Research on a novel data-driven aging estimation method for battery systems in real-world electric vehicles
    Hou, Yankai
    Zhang, Zhaosheng
    Liu, Peng
    Song, Chunbao
    Wang, Zhenpo
    ADVANCES IN MECHANICAL ENGINEERING, 2021, 13 (07)
  • [8] Battery Safety Risk Prediction for Data-Driven Electric Vehicles
    Hu J.
    Yu H.
    Yang B.
    Cheng Y.
    Qiche Gongcheng/Automotive Engineering, 2023, 45 (05): : 814 - 824
  • [9] Data-driven battery state of health estimation based on interval capacity for real-world electric vehicles
    Li, Renzheng
    Hong, Jichao
    Zhang, Huaqin
    Chen, Xinbo
    ENERGY, 2022, 257
  • [10] A model-based and data-driven joint method for state-of-health estimation of lithium-ion battery in electric vehicles
    Lyu, Zhiqiang
    Gao, Renjing
    INTERNATIONAL JOURNAL OF ENERGY RESEARCH, 2019, 43 (14) : 7956 - 7969