A tethered ligand assay to probe SARS-CoV-2:ACE2 interactions

被引:34
作者
Bauer, Magnus S. [1 ,2 ,3 ]
Gruber, Sophia [1 ,2 ]
Hausch, Adina [1 ,2 ]
Gomes, Priscila S. F. C. [4 ]
Milles, Lukas F. [5 ,6 ]
Nicolaus, Thomas [1 ,2 ]
Schendel, Leonard C. [1 ,2 ]
Navajasg, Pilar Lopez [7 ]
Procko, Erik [8 ,9 ]
Lietha, Daniel [7 ]
Melo, Marcelo C. R. [4 ]
Bernardi, Rafael C. [4 ]
Gaub, Hermann E. [1 ,2 ]
Lipfert, Jan [1 ,2 ]
机构
[1] Ludwig Maximilians Univ Munchen, Dept Phys, D-80799 Munich, Germany
[2] Ludwig Maximilians Univ Munchen, Ctr NanoSci, D-80799 Munich, Germany
[3] Stanford Univ, Dept Chem Engn, Stanford, CA 94305 USA
[4] Auburn Univ, Dept Phys, Auburn, AL 36849 USA
[5] Univ Washington, Dept Biochem, Seattle, WA 98195 USA
[6] Univ Washington, Inst Prot Design, Seattle, WA 98195 USA
[7] Spanish Natl Res Council, Ctr Invest Biol Margarita Sala, Madrid 28040, Spain
[8] Univ Illinois, Dept Biochem, Urbana, IL 61801 USA
[9] Univ Illinois, Canc Ctr, Urbana, IL 61801 USA
关键词
SARS-CoV-2; host-pathogen interactions; force spectroscopy; AFM; magnetic tweezers; MOLECULE FORCE SPECTROSCOPY; MAGNETIC TWEEZERS; RECEPTOR; ACE2; ELASTICITY; MECHANISM; ADHESION; LINKERS; LENGTH; VIRUS;
D O I
10.1073/pnas.2114397119
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections are initiated by attachment of the receptor-binding domain (RBD) on the viral Spike protein to angiotensin-converting enzyme-2 (ACE2) on human host cells. This critical first step occurs in dynamic environments, where external forces act on the binding partners and avidity effects play an important role, creating an urgent need for assays that can quantitate SARS-CoV-2 interactions with ACE2 under mechanical load. Here, we introduce a tethered ligand assay that comprises the RBD and the ACE2 ectodomain joined by a flexible peptide linker. Using magnetic tweezers and atomic force spectroscopy as highly complementary single-molecule force spectroscopy techniques, we investigate the RBD:ACE2 interaction over the whole physiologically relevant force range. We combine the experimental results with steered molecular dynamics simulations and observe and assign fully consistent unbinding and unfolding events across the three techniques, enabling us to establish ACE2 unfolding as a molecular fingerprint. Measuring at forces of 2 to 5 pN, we quantify the force dependence and kinetics of the RBD:ACE2 bond in equilibrium. We show that the SARS-CoV-2 RBD:ACE2 interaction has higher mechanical stability, larger binding free energy, and a lower dissociation rate compared to SARS-CoV-1, which helps to rationalize the different infection patterns of the two viruses. By studying how free ACE2 outcompetes tethered ACE2, we show that our assay is sensitive to prevention of bond formation by external binders. We expect our results to provide a way to investigate the roles of viral mutations and blocking agents for targeted pharmaceutical intervention.
引用
收藏
页数:11
相关论文
共 74 条
  • [61] Affibody Molecules in Biotechnological and Medical Applications
    Stahl, Stefan
    Graslund, Torbjorn
    Karlstrom, Amelie Eriksson
    Frejd, Fredrik Y.
    Nygren, Per-Ake
    Lofblom, John
    [J]. TRENDS IN BIOTECHNOLOGY, 2017, 35 (08) : 691 - 712
  • [62] Deep Mutational Scanning of SARS-CoV-2 Receptor Binding Domain Reveals Constraints on Folding and ACE2 Binding
    Starr, Tyler N.
    Greaney, Allison J.
    Hilton, Sarah K.
    Ellis, Daniel
    Crawford, Katharine H. D.
    Dingens, Adam S.
    Navarro, Mary Jane
    Bowen, John E.
    Tortorici, M. Alejandra
    Walls, Alexandra C.
    King, Neil P.
    Veesler, David
    Bloom, Jesse D.
    [J]. CELL, 2020, 182 (05) : 1295 - +
  • [63] The elasticity of a single supercoiled DNA molecule
    Strick, TR
    Allemand, JF
    Bensimon, D
    Bensimon, A
    Croquette, V
    [J]. SCIENCE, 1996, 271 (5257) : 1835 - 1837
  • [64] Discovering small-molecule therapeutics against SARS-CoV-2
    Tiwari, Vaibhav
    Beer, Jacob C.
    Sankaranarayanan, Nehru Viji
    Swanson-Mungerson, Michelle
    Desai, Umesh R.
    [J]. DRUG DISCOVERY TODAY, 2020, 25 (08) : 1535 - 1544
  • [65] Combining in Vitro and in Silico Single-Molecule Force Spectroscopy to Characterize and Tune Cellulosomal Scaffoldin Mechanics
    Verdorfer, Tobias
    Bernardi, Rafael C.
    Meinhold, Aylin
    Ott, Wolfgang
    Luthey-Schulten, Zaida
    Nash, Michael A.
    Gaub, Hermann E.
    [J]. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2017, 139 (49) : 17841 - 17852
  • [66] Dynamics and energy landscape of DNA plectoneme nucleation
    Walker, Philipp U.
    Vanderlinden, Willem
    Lipfert, Jan
    [J]. PHYSICAL REVIEW E, 2018, 98 (04)
  • [67] Walls AC, 2020, CELL, V181, P281, DOI [10.1016/j.cell.2020.02.058, 10.1016/j.cell.2020.11.032]
  • [68] Structural and Functional Basis of SARS-CoV-2 Entry by Using Human ACE2
    Wang, Qihui
    Zhang, Yanfang
    Wu, Lili
    Niu, Sheng
    Song, Chunli
    Zhang, Zengyuan
    Lu, Guangwen
    Qiao, Chengpeng
    Hu, Yu
    Yuen, Kwok-Yung
    Wang, Qisheng
    Zhou, Huan
    Yan, Jinghua
    Qi, Jianxun
    [J]. CELL, 2020, 181 (04) : 894 - +
  • [69] Virological assessment of hospitalized patients with COVID-2019 (vol 581, pg 465, 2020)
    Wolfel, Roman
    Corman, Victor M.
    Guggemos, Wolfgang
    Seilmaier, Michael
    Zange, Sabine
    Muller, Marcel A.
    Niemeyer, Daniela
    Jones, Terry C.
    Vollmar, Patrick
    Rothe, Camilla
    Hoelscher, Michael
    Bleicker, Tobias
    Brunink, Sebastian
    Schneider, Julia
    Ehmann, Rosina
    Zwirglmaier, Katrin
    Drosten, Christian
    Wendtner, Clemens
    [J]. NATURE, 2020, 588 (7839) : E35 - E35
  • [70] Structural Basis for Potent Neutralization of Betacoronaviruses by Single-Domain Camelid Antibodies
    Wrapp, Daniel
    De Vlieger, Dorien
    Corbett, Kizzmekia S.
    Torres, Gretel M.
    Wang, Nianshuang
    Van Breedam, Wander
    Roose, Kenny
    van Schie, Loes
    Hoffmann, Markus
    Poehlmann, Stefan
    Graham, Barney S.
    Callewaert, Nico
    Schepens, Bert
    Saelens, Xavier
    McLellan, Jason S.
    [J]. CELL, 2020, 181 (05) : 1004 - +