Existence, uniqueness and regularity of solutions to semilinear nonlocal functional differential problems

被引:18
作者
Bahuguna, D [1 ]
机构
[1] Indian Inst Technol, Dept Math, Kanpur 208016, Uttar Pradesh, India
关键词
nonlocal problem; C-0-semigroup; mild; strong and classical solutions;
D O I
10.1016/j.na.2004.03.026
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we consider a semilinear nonlocal functional differential problem in a Banach space. We first establish the existence, uniqueness and continuation of a mild solution. We then prove some regularity results for this mild solution under different conditions. Finally, we consider some applications of the abstract results. (C) 2004 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1021 / 1028
页数:8
相关论文
共 8 条
[1]  
Balachandran K, 1996, INDIAN J PURE AP MAT, V27, P443
[2]   Application of properties of the right-hand sides of evolution equations to an investigation of nonlocal evolution problems [J].
Byszewski, L .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1998, 33 (05) :413-426
[3]   Existence of solutions of a semilinear functional-differential evolution nonlocal problem [J].
Byszewski, L ;
Akca, H .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1998, 34 (01) :65-72
[4]   THEOREMS ABOUT THE EXISTENCE AND UNIQUENESS OF SOLUTIONS OF A SEMILINEAR EVOLUTION NONLOCAL CAUCHY-PROBLEM [J].
BYSZEWSKI, L .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1991, 162 (02) :494-505
[5]  
Byszewski L., 1999, J. Appl. Math. Stochastic Anal., V12, P91
[6]  
Byszewski L., 1991, Applicable Analysis, V40, P11
[7]   Semilinear integrodifferential equations with nonlocal cauchy problem [J].
Lin, YP ;
Liu, JH .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1996, 26 (05) :1023-1033
[8]  
Pazy A., 1983, SEMIGROUPS LINEAR OP, DOI [10.1007/978-1-4612-5561-1, DOI 10.1007/978-1-4612-5561-1]