Extraction of Urban Water Bodies from High-Resolution Remote-Sensing Imagery Using Deep Learning

被引:152
|
作者
Chen, Yang [1 ,2 ]
Fan, Rongshuang [2 ]
Yang, Xiucheng [3 ]
Wang, Jingxue [1 ]
Latif, Aamir [4 ]
机构
[1] Liaoning Tech Univ, Sch Geomat, Fuxin 123000, Peoples R China
[2] Chinese Acad Surveying & Mapping, Beijing 100830, Peoples R China
[3] Univ Strasbourg, ICube Lab, F-67000 Strasbourg, France
[4] Univ Chinese Acad Sci, Inst Geog Sci & Nat Resources Res, Beijing 10010, Peoples R China
基金
中国国家自然科学基金;
关键词
deep learning; convolutional neural networks; superpixel; urban water bodies; high-resolution remote-sensing images; CONVOLUTIONAL NEURAL-NETWORKS; SCENE CLASSIFICATION; INDEX NDWI; SENTINEL-2; MANAGEMENT; BODY;
D O I
10.3390/w10050585
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Accurate information on urban surface water is important for assessing the role it plays in urban ecosystem services in the context of human survival and climate change. The precise extraction of urban water bodies from images is of great significance for urban planning and socioeconomic development. In this paper, a novel deep-learning architecture is proposed for the extraction of urban water bodies from high-resolution remote sensing (HRRS) imagery. First, an adaptive simple linear iterative clustering algorithm is applied for segmentation of the remote-sensing image into high-quality superpixels. Then, a new convolutional neural network (CNN) architecture is designed that can extract useful high-level features of water bodies from input data in a complex urban background and mark the superpixel as one of two classes: an including water or no-water pixel. Finally, a high-resolution image of water-extracted superpixels is generated. Experimental results show that the proposed method achieved higher accuracy for water extraction from the high-resolution remote-sensing images than traditional approaches, and the average overall accuracy is 99.14%.
引用
收藏
页数:20
相关论文
共 50 条
  • [1] Road Extraction from High-Resolution Remote Sensing Imagery Using Deep Learning
    Xu, Yongyang
    Xie, Zhong
    Feng, Yaxing
    Chen, Zhanlong
    REMOTE SENSING, 2018, 10 (09)
  • [2] Extraction of water bodies from high-resolution remote sensing imagery based on a deep semantic segmentation network
    Sun, Dechao
    Gao, Guang
    Huang, Lijun
    Liu, Yunpeng
    Liu, Dongquan
    SCIENTIFIC REPORTS, 2024, 14 (01):
  • [3] Building Extraction from High-Resolution Remote-Sensing Images Based on Deep Learning
    You, Haihui
    Li, Linhui
    Jing, Weipeng
    ELEKTROTEHNISKI VESTNIK, 2020, 87 (05): : 281 - 286
  • [4] Building extraction from high-resolution remote-sensing images based on deep learning
    You, Haihui
    Li, Linhui
    Jing, Weipeng
    Elektrotehniski Vestnik/Electrotechnical Review, 2020, 87 (05): : 281 - 286
  • [5] Land-Cover Classification Using Deep Learning with High-Resolution Remote-Sensing Imagery
    Fayaz, Muhammad
    Nam, Junyoung
    Dang, L. Minh
    Song, Hyoung-Kyu
    Moon, Hyeonjoon
    APPLIED SCIENCES-BASEL, 2024, 14 (05):
  • [6] NFANet: A Novel Method for Weakly Supervised Water Extraction From High-Resolution Remote-Sensing Imagery
    Lu, Ming
    Fang, Leyuan
    Li, Muxing
    Zhang, Bob
    Zhang, Yi
    Ghamisi, Pedram
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [7] Extraction of snow cover from high-resolution remote sensing imagery using deep learning on a small dataset
    Guo, Xuejun
    Chen, Yin
    Liu, Xiaofeng
    Zhao, Yue
    REMOTE SENSING LETTERS, 2020, 11 (01) : 66 - 75
  • [8] Advances in urban information extraction from high-resolution remote sensing imagery
    Jianya Gong
    Chun Liu
    Xin Huang
    Science China Earth Sciences, 2020, 63 : 463 - 475
  • [9] Advances in urban information extraction from high-resolution remote sensing imagery
    Jianya GONG
    Chun LIU
    Xin HUANG
    ScienceChina(EarthSciences), 2020, 63 (04) : 463 - 475
  • [10] Advances in urban information extraction from high-resolution remote sensing imagery
    Gong, Jianya
    Liu, Chun
    Huang, Xin
    SCIENCE CHINA-EARTH SCIENCES, 2020, 63 (04) : 463 - 475