Analysis of the Multi-Dimensional Navier-Stokes Equation by Caputo Fractional Operator

被引:13
作者
Albalawi, Kholoud Saad [1 ]
Mishra, Manvendra Narayan [2 ]
Goswami, Pranay [3 ]
机构
[1] Imam Mohammad Ibn Saud Islamic Univ, Coll Sci, Dept Math & Stat, Riyadh 11566, Saudi Arabia
[2] AMITY Univ Rajasthan, AMITY Sch Appl Sci, Dept Math, Jaipur 303002, India
[3] Dr R Ambedkar Univ Delhi, Sch Liberal Studies, Dept Math, Delhi 110006, India
关键词
Navier-Stokes equation; Caputo derivative; existence and uniqueness; Sumudu transform; MODEL;
D O I
10.3390/fractalfract6120743
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this article, we investigate the solution of the fractional multidimensional Navier-Stokes equation based on the Caputo fractional derivative operator. The behavior of the solution regarding the Navier-Stokes equation system using the Sumudu transform approach is discussed analytically and further discussed graphically.
引用
收藏
页数:13
相关论文
共 50 条
  • [21] Application of Navier-Stokes equation to lubrication
    Hong, YP
    Chen, D
    Kong, XM
    Wang, JD
    SCIENCE IN CHINA SERIES A-MATHEMATICS PHYSICS ASTRONOMY, 2001, 44 : 58 - 63
  • [22] Numerical analysis for Navier-Stokes equations with time fractional derivatives
    Zhang, Jun
    Wang, JinRong
    APPLIED MATHEMATICS AND COMPUTATION, 2018, 336 : 481 - 489
  • [23] A STOCHASTIC NAVIER-STOKES EQUATION FOR THE VORTICITY OF A TWO-DIMENSIONAL FLUID
    Kotelenez, Peter
    ANNALS OF APPLIED PROBABILITY, 1995, 5 (04) : 1126 - 1160
  • [24] Stability analysis of a finite element approximation for the Navier-Stokes equation with free surface
    Audusse, Emmanuel
    Barrenechea, Gabriel R.
    Decoene, Astrid
    Quemar, Pierrick
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS, 2024, 58 (01) : 107 - 130
  • [25] Exact solutions to Euler equation and Navier-Stokes equation
    Liu, Mingshuo
    Li, Xinyue
    Zhao, Qiulan
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2019, 70 (02):
  • [26] The Analysis of the Fractional-Order Navier-Stokes Equations by a Novel Approach
    Elsayed, E. M.
    Shah, Rasool
    Nonlaopon, Kamsing
    JOURNAL OF FUNCTION SPACES, 2022, 2022
  • [27] DYNAMICAL BEHAVIOR FOR THE SOLUTIONS OF THE NAVIER-STOKES EQUATION
    Li, Kuijie
    Ozawa, Tohru
    Wang, Baoxiang
    COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2018, 17 (04) : 1511 - 1560
  • [28] Quotients of Navier-Stokes equation on space curves
    Duyunova, Anna
    Lychagin, Valentin
    Tychkov, Sergey
    ANALYSIS AND MATHEMATICAL PHYSICS, 2021, 11 (04)
  • [29] INTERNAL STABILIZATION BY NOISE OF THE NAVIER-STOKES EQUATION
    Barbu, Viorel
    Da Prato, Giuseppe
    SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2011, 49 (01) : 1 - 20
  • [30] A lattice Boltzmann model for the Navier-Stokes equation
    Xu, Wenchao
    Yan, Guangwu
    MICROPROCESSORS AND MICROSYSTEMS, 2023, 96