Mathematical Model of Fractional Duffing Oscillator with Variable Memory

被引:11
作者
Kim, Valentine [1 ,2 ]
Parovik, Roman [1 ,2 ,3 ]
机构
[1] Vitus Bering Kamchatka State Univ, Dept Math & Phys, Pogranichnaya 4, Petropavlovsk Kamchatski 683032, Russia
[2] Kamchatka State Tech Univ, Dept Control Syst, Kluchevskaya 35, Petropavlovsk Kamchatski 683003, Russia
[3] Russian Acad Sci, Far East Branch, Inst Cosmophys Res & Radio Wave Propagat, Mirnaya 7, Paratunka 684034, Russia
基金
俄罗斯基础研究基金会;
关键词
Riemann– Liouville derivative; Grunwald– Letnikov derivative; Lyapunov exponents; Runge rule; phase trajectories; amplitude-frequency characteristic; phase-frequency characteristic; Q-factor; FORCED-OSCILLATIONS; EQUATIONS;
D O I
10.3390/math8112063
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The article investigates a mathematical model of the Duffing oscillator with a variable fractional order derivative of the Riemann-Liouville type. The study of the model is carried out using a numerical scheme based on the approximation of the fractional derivative of the Riemann-Liouville type by a discrete analog-the fractional derivative of Grunwald-Letnikov. The adequacy of the numerical scheme is verified using specific examples. Using a numerical algorithm, oscillograms and phase trajectories are constructed depending on the values of the model parameters. Chaotic regimes of the Duffing fractional oscillator are investigated using the Wolf-Bennetin algorithm. The forced oscillations of the Duffing fractional oscillator are investigated using the harmonic balance method. Analytical formulas for the amplitude-frequency, phase-frequency characteristics, and also the quality factor are obtained. It is shown that the fractional Duffing oscillator possesses different modes: regular, chaotic, multi-periodic. The relationship between the order of the fractional derivative and the quality factor of the oscillatory system is established.
引用
收藏
页码:1 / 14
页数:14
相关论文
共 50 条
[21]   State Identification of Duffing Oscillator Based on Extreme Learning Machine [J].
Li, Gangsheng ;
Zeng, Liping ;
Zhang, Ling ;
Wu, Q. M. Jonathan .
IEEE SIGNAL PROCESSING LETTERS, 2018, 25 (01) :25-29
[22]   A Three Sequential Fractional Differential Problem Of Duffing Type [J].
Tablennehas, Kamel ;
Dahmani, Zoubir .
APPLIED MATHEMATICS E-NOTES, 2021, 21 :587-598
[23]   Damping efficiency of the Duffing system with additional fractional terms [J].
Rysaka, A. ;
Sedlmayr, M. .
APPLIED MATHEMATICAL MODELLING, 2022, 111 :521-533
[24]   Nonlinear model and characteristic analysis of fractional-order high frequency oscillator [J].
Li, Yixuan ;
Chen, Yanfeng ;
Xie, Fan ;
Zhang, Bo ;
Qiu, Dongyuan ;
Cheng, Chao .
AEU-INTERNATIONAL JOURNAL OF ELECTRONICS AND COMMUNICATIONS, 2023, 165
[25]   The analysis of the stochastic evolutionary process of retarded Mathieu-Duffing oscillator [J].
Wang, QiuBao ;
Yang, YueJuan ;
Zhang, Xing .
EUROPEAN PHYSICAL JOURNAL PLUS, 2020, 135 (07)
[26]   Simulation of Fractional Order 2D- Mathematical Model Using α-Fractional Differential Transform Method [J].
Thorat, S. N. ;
Ghadle, K. P. ;
Muneshwar, R. A. .
CONTEMPORARY MATHEMATICS, 2024, 5 (01) :685-697
[27]   Multistability and organization of periodicity in a Van der Pol-Duffing oscillator [J].
Wiggers, Vinicius ;
Rech, Paulo C. .
CHAOS SOLITONS & FRACTALS, 2017, 103 :632-637
[28]   Bifurcation scenarios of the noisy Duffing-van der Pol oscillator [J].
SchenkHoppe, KR .
NONLINEAR DYNAMICS, 1996, 11 (03) :255-274
[29]   An innovative technique to solve a fractal damping Duffing-jerk oscillator [J].
El-Dib, Yusry O. ;
Elgazery, Nasser S. ;
Khattab, Youmna M. ;
Alyousef, Haifa A. .
COMMUNICATIONS IN THEORETICAL PHYSICS, 2023, 75 (05)
[30]   Analysis of a subdiffusion model with a variable-order fractional calibration term [J].
Zheng, Xiangcheng .
APPLIED MATHEMATICS LETTERS, 2023, 142