Mathematical Model of Fractional Duffing Oscillator with Variable Memory

被引:11
作者
Kim, Valentine [1 ,2 ]
Parovik, Roman [1 ,2 ,3 ]
机构
[1] Vitus Bering Kamchatka State Univ, Dept Math & Phys, Pogranichnaya 4, Petropavlovsk Kamchatski 683032, Russia
[2] Kamchatka State Tech Univ, Dept Control Syst, Kluchevskaya 35, Petropavlovsk Kamchatski 683003, Russia
[3] Russian Acad Sci, Far East Branch, Inst Cosmophys Res & Radio Wave Propagat, Mirnaya 7, Paratunka 684034, Russia
基金
俄罗斯基础研究基金会;
关键词
Riemann– Liouville derivative; Grunwald– Letnikov derivative; Lyapunov exponents; Runge rule; phase trajectories; amplitude-frequency characteristic; phase-frequency characteristic; Q-factor; FORCED-OSCILLATIONS; EQUATIONS;
D O I
10.3390/math8112063
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The article investigates a mathematical model of the Duffing oscillator with a variable fractional order derivative of the Riemann-Liouville type. The study of the model is carried out using a numerical scheme based on the approximation of the fractional derivative of the Riemann-Liouville type by a discrete analog-the fractional derivative of Grunwald-Letnikov. The adequacy of the numerical scheme is verified using specific examples. Using a numerical algorithm, oscillograms and phase trajectories are constructed depending on the values of the model parameters. Chaotic regimes of the Duffing fractional oscillator are investigated using the Wolf-Bennetin algorithm. The forced oscillations of the Duffing fractional oscillator are investigated using the harmonic balance method. Analytical formulas for the amplitude-frequency, phase-frequency characteristics, and also the quality factor are obtained. It is shown that the fractional Duffing oscillator possesses different modes: regular, chaotic, multi-periodic. The relationship between the order of the fractional derivative and the quality factor of the oscillatory system is established.
引用
收藏
页码:1 / 14
页数:14
相关论文
共 25 条
[11]  
Kim V.A., 2018, B KRASEC PHYS MATH S, V23, P98
[12]   Systems and synthetic biology approaches in understanding biological oscillators [J].
Li, Zhengda ;
Yang, Qiong .
QUANTITATIVE BIOLOGY, 2018, 6 (01) :1-14
[13]   An analytical criterion for jump phenomena in fractional Duffing oscillators [J].
Liu, Q. X. ;
Liu, J. K. ;
Chen, Y. M. .
CHAOS SOLITONS & FRACTALS, 2017, 98 :216-219
[14]  
Oldham K., 1974, FRACTIONAL CALCULUS, P240
[15]  
Oseledets V., 1968, Trans. Mosc. Math. Soc., V19, P197
[16]   Amplitude-Frequency and Phase-Frequency Performances of Forced Oscillations of a Nonlinear Fractional Oscillator [J].
Parovik, R., I .
TECHNICAL PHYSICS LETTERS, 2019, 45 (07) :660-663
[17]   Mathematical Modeling of Linear Fractional Oscillators [J].
Parovik, Roman .
MATHEMATICS, 2020, 8 (11) :1-26
[18]   Numerical solution of full fractional Duffing equations with Cubic-Quintic-Heptic nonlinearities [J].
Pirmohabbati, P. ;
Sheikhani, A. H. Refahi ;
Najafi, H. Saberi ;
Ziabari, A. Abdolahzadeh .
AIMS MATHEMATICS, 2020, 5 (02) :1621-1641
[19]   Analysis of Forced Oscillations of a Fractional Oscillator [J].
Pskhu, A. V. ;
Rekhviashvili, S. Sh. .
TECHNICAL PHYSICS LETTERS, 2018, 44 (12) :1218-1221
[20]   Chaotic vibrations of the duffing system with fractional damping [J].
Syta, Arkadiusz ;
Litak, Grzegorz ;
Lenci, Stefano ;
Scheffler, Michael .
CHAOS, 2014, 24 (01) :1-6