Mathematical Model of Fractional Duffing Oscillator with Variable Memory

被引:11
作者
Kim, Valentine [1 ,2 ]
Parovik, Roman [1 ,2 ,3 ]
机构
[1] Vitus Bering Kamchatka State Univ, Dept Math & Phys, Pogranichnaya 4, Petropavlovsk Kamchatski 683032, Russia
[2] Kamchatka State Tech Univ, Dept Control Syst, Kluchevskaya 35, Petropavlovsk Kamchatski 683003, Russia
[3] Russian Acad Sci, Far East Branch, Inst Cosmophys Res & Radio Wave Propagat, Mirnaya 7, Paratunka 684034, Russia
基金
俄罗斯基础研究基金会;
关键词
Riemann– Liouville derivative; Grunwald– Letnikov derivative; Lyapunov exponents; Runge rule; phase trajectories; amplitude-frequency characteristic; phase-frequency characteristic; Q-factor; FORCED-OSCILLATIONS; EQUATIONS;
D O I
10.3390/math8112063
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The article investigates a mathematical model of the Duffing oscillator with a variable fractional order derivative of the Riemann-Liouville type. The study of the model is carried out using a numerical scheme based on the approximation of the fractional derivative of the Riemann-Liouville type by a discrete analog-the fractional derivative of Grunwald-Letnikov. The adequacy of the numerical scheme is verified using specific examples. Using a numerical algorithm, oscillograms and phase trajectories are constructed depending on the values of the model parameters. Chaotic regimes of the Duffing fractional oscillator are investigated using the Wolf-Bennetin algorithm. The forced oscillations of the Duffing fractional oscillator are investigated using the harmonic balance method. Analytical formulas for the amplitude-frequency, phase-frequency characteristics, and also the quality factor are obtained. It is shown that the fractional Duffing oscillator possesses different modes: regular, chaotic, multi-periodic. The relationship between the order of the fractional derivative and the quality factor of the oscillatory system is established.
引用
收藏
页码:1 / 14
页数:14
相关论文
共 25 条
[1]  
[Anonymous], 1993, INTRO FRACTIONAL CAL
[2]   HAMILTON'S PRINCIPLE WITH VARIABLE ORDER FRACTIONAL DERIVATIVES [J].
Atanackovic, Teodor M. ;
Pilipovic, Stevan .
FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2011, 14 (01) :94-109
[3]  
Danylchuk Hanna, 2019, SHS WEB C, V65, P6008, DOI [10.1051/shsconf/20196506008, DOI 10.1051/SHSCONF/20196506008]
[4]  
Ejikeme C.L., 2018, Glob. J. Pure Appl. Math, V14, P1363
[5]  
Eze SC, 2020, REV MEX FIS, V66, P187, DOI [10.31349/revmexfis.66.187, 10.31349/RevMexFis.66.187]
[6]   Editorial: Machine Learning and Intelligent Communications [J].
Huang, Xin-Lin ;
Ma, Xiaomin ;
Hu, Fei .
MOBILE NETWORKS & APPLICATIONS, 2018, 23 (01) :68-70
[7]  
JIMENEZ S, 2015, DISCRETE CONT DYN-A, P660, DOI DOI 10.3934/proc.2015.0660
[8]  
Killbas A.A., 2006, N HOLLAND MATH STUD, DOI [10. 1016/S0304-0208(06)80001-0, DOI 10.1016/S0304-0208(06)80001-0]
[9]  
Kim V.A., 2016, B KRASEC PHYS MATH S, V13, P46
[10]  
Kim V.A., 2020, PROC KABARD BALKAR S, V93, P46