Mechanical Properties of High-Strength Pervious Concrete with Steel Fiber or Glass Fiber

被引:24
|
作者
Lee, Ming-Gin [1 ]
Wang, Wei-Chien [2 ]
Wang, Yung-Chih [2 ]
Hsieh, Yi-Cheng [2 ]
Lin, Yung-Chih [2 ]
机构
[1] Chaoyang Univ Technol, Dept Construct Engn, Taichung 413, Taiwan
[2] Natl Cent Univ, Dept Civil Engn, Taoyuan 320, Taiwan
关键词
pervious concrete; glass fiber; steel fiber; strength; elastic modulus;
D O I
10.3390/buildings12050620
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
Pervious concrete (also called porous concrete) is one of the most promising sustainable and green building materials today. This study examined high-strength pervious concrete and ordinary-strength pervious concrete reinforced with steel fiber or glass fiber. A total of fifteen mixtures of normal- and high-strength pervious concretes with steel fiber or glass fiber were used. The goal of high-strength pervious concrete is that the 28-day compressive strength be above 42 MPa and the porosity be as close to 15% as possible to achieve technical specifications. Both normal- and high-strength pervious concretes reinforced with steel fiber (1%, 2%) or glass fiber (0.25%, 0.5%) were investigated in water permeability, porosity, compressive strength, flexural strength, elastic modulus, and toughness tests. The test results show that in both high-strength pervious concrete and ordinary pervious concrete with steel fibers added, the porosity and permeability coefficient are increased compared with the control group. The coefficient of permeability for high-strength, fiber-reinforced pervious concretes with two aggregate sizes meets the requirements of the ACI specification for structural concrete. In addition, the high-strength pervious concrete specimen H1-S2 (2% steel fiber) has the highest compressive strength of 52.8 MPa at the age of 28 days. The flexural strength of pervious concrete also increases with age. However, the flexural strength of fiber-reinforced pervious concrete did not follow this trend due to the large variation in the quality control of different fiber mixtures. However, both steel fiber and glass fiber have a certain degree of improvement in the flexural toughness, and the effect is better with steel fiber. After the flexural strength reaches the peak value, there is still about 30% of the bearing capacity, and it gradually decreases until it is completely destroyed.
引用
收藏
页数:18
相关论文
共 50 条
  • [1] Effects of Steel Fiber and Glass Fiber on High Strength Pervious Concrete
    Wang Y.-C.
    Lee M.-G.
    Wang W.-C.
    Hsieh Y.-C.
    Lin W.-C.
    Journal of the Chinese Institute of Civil and Hydraulic Engineering, 2022, 34 (05): : 359 - 366
  • [2] Mechanical properties of high-strength steel fiber-reinforced concrete
    Song, PS
    Hwang, S
    CONSTRUCTION AND BUILDING MATERIALS, 2004, 18 (09) : 669 - 673
  • [3] Mechanical properties of steel fiber-reinforced, high-strength, lightweight concrete
    Gao, JM
    Sun, W
    Morino, K
    CEMENT & CONCRETE COMPOSITES, 1997, 19 (04): : 307 - 313
  • [4] Mechanical properties of normal to high-strength steel fiber-reinforced concrete
    Khaloo, AR
    Kim, N
    CEMENT CONCRETE AND AGGREGATES, 1996, 18 (02): : 92 - 97
  • [5] Mechanical Properties of Steel Fiber Reinforced High-Strength Lightweight Aggregate Concrete
    Ye Y.
    Wang Z.
    Xie F.
    Fu C.
    Zhang Z.
    Jianzhu Cailiao Xuebao/Journal of Building Materials, 2021, 24 (01): : 63 - 70
  • [6] Experimental Research on Physical and Mechanical Properties of Steel Fiber High-strength Concrete
    Wang Yudong
    Fan Xiaochun
    ADVANCES IN BUILDING MATERIALS, PTS 1-3, 2011, 168-170 : 1061 - 1064
  • [7] Influence of Diameter Distribution of High-Strength Glass Fiber on Fiber Mechanical Properties
    Zu, Qun
    Song, Wei
    Huang, Songlin
    Guo, Renxian
    Kuei Suan Jen Hsueh Pao/Journal of the Chinese Ceramic Society, 2022, 50 (04): : 957 - 964
  • [8] Effects of Reinforcing Fiber Strength on Mechanical Properties of High-Strength Concrete
    Yun, Hyun-Do
    Lim, Seong-Hoon
    Choi, Won-Chang
    FIBERS, 2019, 7 (10)
  • [9] Effects of Single and Hybrid Steel Fiber Lengths and Fiber Contents on the Mechanical Properties of High-Strength Fiber-Reinforced Concrete
    Kim, Kyoung-Chul
    Yang, In-Hwan
    Joh, Changbin
    ADVANCES IN CIVIL ENGINEERING, 2018, 2018
  • [10] Abrasion and Maintenance of High-Strength Fiber-Reinforced Pervious Concrete
    Lee, Ming-Gin
    Wang, Yung-Chih
    Wang, Wei-Chien
    Hsieh, Yi-Cheng
    BUILDINGS, 2024, 14 (01)