The AETHER project: development of air-breathing electric propulsion for VLEO missions

被引:21
作者
Andreussi, T. [1 ]
Ferrato, E. [1 ]
Paissoni, C. A. [1 ]
Kitaeva, A. [1 ]
Giannetti, V [1 ]
Piragino, A. [1 ]
Schaeff, S. [2 ]
Katsonis, K. [3 ]
Berenguer, Ch [3 ]
Kovacova, Z. [4 ]
Neubauer, E. [4 ]
Tisaev, M. [5 ]
Karadag, B. [5 ]
Fabris, A. Lucca [5 ]
Smirnova, M. [6 ]
Mingo, A. [6 ]
Le Quang, D. [7 ]
Alsalihi, Z. [7 ]
Bariselli, F. [7 ]
Parodi, P. [7 ]
Jorge, P. [7 ]
Magin, T. E. [7 ]
机构
[1] SITAEL SPA, Via A Gherardesca 5, I-56121 Pisa, Italy
[2] Astos Solut GmbH, Meitnerstr 8, D-70563 Stuttgart, Germany
[3] DEDALOS Ltd, Vas Olgas 128, Thessaloniki 54645, Greece
[4] RHP Technol GmbH, A-2444 Seibersdorf, Austria
[5] Univ Surrey, Surrey Space Ctr, Guildford GU2 7XH, Surrey, England
[6] TransMIT Gesell Technol Transfer mbH, D-35394 Giessen, Germany
[7] Von Karman Inst Fluid Dynam, B-1640 Rhode St Genese, Belgium
基金
欧盟地平线“2020”;
关键词
Air-breathing electric propulsion; Plasma thruster; Very low Earth orbit; Rarefied air flow;
D O I
10.1007/s12567-022-00442-3
中图分类号
V [航空、航天];
学科分类号
08 ; 0825 ;
摘要
The possibility of efficiently exploiting Very Low Earth orbits (VLEO) poses significant technological challenges. One of the most demanding constraints is the need to counteract the drag generated by the interaction of the spacecraft with the surrounding atmosphere. Funded by the European Commission under the H2020 programme, the Air-breathing Electric THrustER (AETHER) project aims at developing the first propulsion system able to maintain a spacecraft at very-low altitudes for an extended time. The main objective of the project is to demonstrate, in a relevant environment, the critical functions of an air-breathing electric propulsion system, and its effectiveness in compensating atmospheric drag. This achievement will involve multiple research activities, among which: (i) the characterization of specific application cases through an extensive market analysis in order to define specific requirements and constraints at different design levels, (ii) fulfilment of pertinent testing conditions of flight conditions on-ground, relevant to the specific mission cases, (iii) the development of critical technologies, in particular those relevant to the collection, the ionization and the acceleration of rarefied atmospheric mixtures and (iv) the testing of the RAM-EP thruster to assess the system performance. In this paper, the main activities foreseen in the AETHER project are described, providing the detailed perspective towards an effective exploitation of the project outcomes for a possible future in-orbit demonstration.
引用
收藏
页码:717 / 740
页数:24
相关论文
共 39 条
[1]  
Andreussi T., 2021, 72 INT ASTR C DUB UA
[2]  
Andreussi T., 2019, AIAA Propulsion and Energy Forum 2019-3995
[3]  
Andreussi T., 2017, 35 INT EL PROP C ATL
[4]  
Barral S., 2015, P 34 INT EL PROP C K
[5]  
Berenguer Ch., 2021, 7 SPAC PROP 2020 1 C
[6]   Collisional-radiative model in air for earth re-entry problems [J].
Bultel, A ;
Chéron, BG ;
Bourdon, A ;
Motapon, O ;
Schneider, IF .
PHYSICS OF PLASMAS, 2006, 13 (04)
[7]  
Chen F. F., 2016, Introduction to Plasma Physics and Controlled Fusion, DOI DOI 10.1007/978-3-319-22309-4
[8]  
Cifali G., 2011, IEPC2011224
[9]   The benefits of very low earth orbit for earth observation missions [J].
Crisp, N. H. ;
Roberts, P. C. E. ;
Livadiotti, S. ;
Oiko, V. T. A. ;
Edmondson, S. ;
Haigh, S. J. ;
Huyton, C. ;
Sinpetru, L. A. ;
Smith, K. L. ;
Worrall, S. D. ;
Becedas, J. ;
Dominguez, R. M. ;
Gonzalez, D. ;
Hanessian, V ;
Molgaard, A. ;
Nielsen, J. ;
Bisgaard, M. ;
Chan, Y-A ;
Fasoulas, S. ;
Herdrich, G. H. ;
Romano, F. ;
Traub, C. ;
Garcia-Alminana, D. ;
Rodriguez-Donaire, S. ;
Sureda, M. ;
Kataria, D. ;
Outlaw, R. ;
Belkouchi, B. ;
Conte, A. ;
Perez, J. S. ;
Villain, R. ;
Heisserer, B. ;
Schwalber, A. .
PROGRESS IN AEROSPACE SCIENCES, 2020, 117
[10]  
Curtis H. D, 2013, Orbital Mechanics for Engineering Students, DOI [DOI 10.1016/C2011-0-69685-1, https://doi.org/10.1016/B978-0-08-097747-8.00002-5, DOI 10.1016/B978-0-08-097747-8.00002-5]