A convergent relaxation of the Douglas-Rachford algorithm

被引:7
|
作者
Nguyen Hieu Thao [1 ,2 ]
机构
[1] Delft Univ Technol, Delft Ctr Syst & Control, NL-2628 CD Delft, Netherlands
[2] Can Tho Univ, Sch Educ, Dept Math, Can Tho, Vietnam
基金
欧洲研究理事会;
关键词
Almost averagedness; Picard iteration; Alternating projection method; Douglas-Rachford method; RAAR algorithm; Krasnoselski-Mann relaxation; Metric subregularity; Transversality; Collection of sets; NONLINEAR REGULARITY MODELS; LOCAL LINEAR CONVERGENCE; ALTERNATING PROJECTIONS; FEASIBILITY PROBLEMS; METRIC REGULARITY; SETS; COLLECTIONS; NONCONVEX; MINIMIZATION; CONVEX;
D O I
10.1007/s10589-018-9989-y
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
This paper proposes an algorithm for solving structured optimization problems, which covers both the backward-backward and the Douglas-Rachford algorithms as special cases, and analyzes its convergence. The set of fixed points of the corresponding operator is characterized in several cases. Convergence criteria of the algorithm in terms of general fixed point iterations are established. When applied to nonconvex feasibility including potentially inconsistent problems, we prove local linear convergence results under mild assumptions on regularity of individual sets and of the collection of sets. In this special case, we refine known linear convergence criteria for the Douglas-Rachford (DR) algorithm. As a consequence, for feasibility problem with one of the sets being affine, we establish criteria for linear and sublinear convergence of convex combinations of the alternating projection and the DR methods. These results seem to be new. We also demonstrate the seemingly improved numerical performance of this algorithm compared to the RAAR algorithm for both consistent and inconsistent sparse feasibility problems.
引用
收藏
页码:841 / 863
页数:23
相关论文
共 50 条
  • [31] Strong convergence of the viscosity douglas-rachford algorithm for inclusion problems
    Wang Y.
    Zhang H.
    Applied Set-Valued Analysis and Optimization, 2020, 2 (03): : 339 - 349
  • [32] 广义循环Douglas-Rachford算法
    郭科
    张有才
    西华师范大学学报(自然科学版), 2018, 39 (04) : 404 - 409
  • [33] ANDERSON ACCELERATED DOUGLAS-RACHFORD SPLITTING
    Fu, Anqi
    Zhang, Junzi
    Boyd, Stephen
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2020, 42 (06): : A3560 - A3583
  • [34] Proximal Point Algorithm, Douglas-Rachford Algorithm and Alternating Projections: A Case Study
    Bauschke, Heinz H.
    Dao, Minh N.
    Noll, Dominikus
    Phan, Hung M.
    JOURNAL OF CONVEX ANALYSIS, 2016, 23 (01) : 237 - 261
  • [35] A Cyclic Douglas-Rachford Iteration Scheme
    Borwein, Jonathan M.
    Tam, Matthew K.
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2014, 160 (01) : 1 - 29
  • [36] SURVEY: SIXTY YEARS OF DOUGLAS-RACHFORD
    LINDSTROM, S. C. O. T. T. B.
    SIMS, B. R. A. I. L. E. Y.
    JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2021, 110 (03) : 333 - 370
  • [37] Douglas-Rachford algorithm for magnetorelaxometry imaging using random and deterministic activations
    Haltmeier, Markus
    Zangerl, Gerhard
    Schier, Peter
    Aumgarten, Daniel B.
    INTERNATIONAL JOURNAL OF APPLIED ELECTROMAGNETICS AND MECHANICS, 2019, 60 : S63 - S78
  • [38] Convergence of an Inertial Shadow Douglas-Rachford Splitting Algorithm for Monotone Inclusions
    Fan, Jingjing
    Qin, Xiaolong
    Tan, Bing
    NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 2021, 42 (14) : 1627 - 1644
  • [39] Shadow Douglas-Rachford Splitting for Monotone Inclusions
    Csetnek, Ernoe Robert
    Malitsky, Yura
    Tam, Matthew K.
    APPLIED MATHEMATICS AND OPTIMIZATION, 2019, 80 (03): : 665 - 678
  • [40] Semi-implicit relaxed Douglas-Rachford algorithm (sDR) for ptychography
    Minh Pham
    Rana, Arjun
    Miao, Jianwei
    Osher, Stanley
    OPTICS EXPRESS, 2019, 27 (22) : 31246 - 31260