Problems for elliptic singular equations with a gradient term

被引:42
作者
Giarrusso, E
Porru, G
机构
[1] Univ Cagliari, Dipartimento Matemat & Informat, I-09124 Cagliari, Italy
[2] Univ Naples, Dipartimento Matemat & Applicaz, I-80126 Naples, Italy
关键词
nonlinear elliptic singular equations; boundary behaviour;
D O I
10.1016/j.na.2005.08.007
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We investigate the homogeneous Dirichlet problem for a class of second-order nonlinear elliptic partial differential equations with singular data. In particular, we study the asymptotic behaviour of the solution near the boundary up to the second order under various assumptions on the growth of the coefficients of the equation. (c) 2005 Elsevier Ltd. All rights reserved.
引用
收藏
页码:107 / 128
页数:22
相关论文
共 19 条
[1]  
[Anonymous], 1998, DIFFERENTIAL INTEGRA
[2]  
Bandle C., 1996, Adv. Differential Equations, V1, P133
[3]   Qualitative properties of solutions to elliptic singular problems [J].
Berhanu, S ;
Gladiali, F ;
Porru, G .
JOURNAL OF INEQUALITIES AND APPLICATIONS, 1999, 3 (04) :313-330
[4]  
BERHANU S, IN PRESS ACTA MATH S
[5]  
Crandall M.G., 1977, Commun. Partial. Differ. Equ., V2, P193, DOI DOI 10.1080/03605307708820029
[6]   Asymptotic behaviour of large solutions of an elliptic quasilinear equation in a borderline case [J].
Giarrusso, E .
COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 2000, 331 (10) :777-782
[7]  
Giarrusso E., 2003, APPL MATH GOLDEN AGE, P163
[8]  
Kawohl B., 1992, PITMAN RES NOTES MAT, V266, P156
[9]   INVARIANT CRITERIA FOR EXISTENCE OF SOLUTIONS TO 2ND-ORDER QUASILINEAR ELLIPTIC EQUATIONS [J].
KAZDAN, JL ;
KRAMER, RJ .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1978, 31 (05) :619-645
[10]   ON SOLUTIONS OF DELTA-U= F(U) [J].
KELLER, JB .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1957, 10 (04) :503-510