Gauging the twisted Poincare symmetry as a noncommutative theory of gravitation

被引:9
作者
Chaichian, M. [1 ,2 ]
Oksanen, M. [1 ]
Tureanu, A. [1 ,2 ]
Zet, G. [3 ]
机构
[1] Univ Helsinki, Dept Phys, FIN-00014 Helsinki, Finland
[2] Helsinki Inst Phys, FIN-00014 Helsinki, Finland
[3] Gh Asachi Tech Univ, Dept Phys, Iasi 700050, Romania
来源
PHYSICAL REVIEW D | 2009年 / 79卷 / 04期
基金
芬兰科学院;
关键词
STANDARD MODEL; QUANTIZATION; INVARIANCE; SPACETIME; SPIN;
D O I
10.1103/PhysRevD.79.044016
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Einstein's theory of general relativity was formulated as a gauge theory of Lorentz symmetry by Utiyama in 1956, while the Einstein-Cartan gravitational theory was formulated by Kibble in 1961 as the gauge theory of Poincare transformations. In this framework, we propose a formulation of the gravitational theory on canonical noncommutative space-time by covariantly gauging the twisted Poincare symmetry, in order to fulfil the requirement of covariance under the general coordinate transformations, an essential ingredient of the theory of general relativity. It appears that the twisted Poincare symmetry cannot be gauged by generalizing the Abelian twist to a covariant non-Abelian twist, nor by introducing a more general covariant twist element. The advantages of such a formulation as well as the related problems are discussed and possible ways out are outlined.
引用
收藏
页数:8
相关论文
共 59 条
[31]   Chiral gauge anomalies on noncommutative R4 [J].
Gracia-Bondía, JM ;
Martín, CP .
PHYSICS LETTERS B, 2000, 479 (1-3) :321-328
[32]   Emergent gravity, matrix models and UV/IR mixing [J].
Grosse, Harald ;
Steinacker, Harold ;
Wohlgenannt, Michael .
JOURNAL OF HIGH ENERGY PHYSICS, 2008, (04)
[33]   ALL POSSIBLE GENERATORS OF SUPERSYMMETRIES OF S-MATRIX [J].
HAAG, R ;
LOPUSZANSKI, JT ;
SOHNIUS, M .
NUCLEAR PHYSICS B, 1975, B 88 (02) :257-274
[34]   Noncommutative gravity [J].
Harikumar, E. ;
Rivelles, Victor O. .
CLASSICAL AND QUANTUM GRAVITY, 2006, 23 (24) :7551-7560
[35]   POINCARE GAUGE INVARIANCE AND DYNAMICAL ROLE OF SPIN IN GRAVITATIONAL THEORY [J].
HAYASHI, K ;
BREGMAN, A .
ANNALS OF PHYSICS, 1973, 75 (02) :562-600
[36]   GENERAL RELATIVITY WITH SPIN AND TORSION - FOUNDATIONS AND PROSPECTS [J].
HEHL, FW ;
VONDERHEYDE, P ;
KERLICK, GD ;
NESTER, JM .
REVIEWS OF MODERN PHYSICS, 1976, 48 (03) :393-416
[37]   Enveloping algebra-valued gauge transformations for non-abelian gauge groups on non-commutative spaces [J].
Jurco, B ;
Schraml, S ;
Schupp, P ;
Wess, J .
EUROPEAN PHYSICAL JOURNAL C, 2000, 17 (03) :521-526
[38]   LORENTZ INVARIANCE AND GRAVITATIONAL FIELD [J].
KIBBLE, TW .
JOURNAL OF MATHEMATICAL PHYSICS, 1961, 2 (02) :212-&
[39]   Θ-twisted gravity [J].
Kobakhidze, Archil .
INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2008, 23 (16-17) :2541-2545
[40]   Deformation quantization of Poisson manifolds [J].
Kontsevich, M .
LETTERS IN MATHEMATICAL PHYSICS, 2003, 66 (03) :157-216