QUASI-SYMMETRIC FUNCTIONS AND MOD p MULTIPLE HARMONIC SUMS

被引:47
作者
Hoffman, Michael E. [1 ]
机构
[1] US Naval Acad, Dept Math, Annapolis, MD 21402 USA
关键词
multiple harmonic sums; mod p harmonic sums; quasi-symmetric functions; IRREGULAR PRIMES; ALGEBRA;
D O I
10.2206/kyushujm.69.345
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We present a number of results about (finite) multiple harmonic sums modulo a prime, which provide interesting parallels to known results about multiple zeta values (i.e. infinite multiple harmonic series). In particular, we prove a 'duality' result for mod p harmonic sums similar to (but distinct from) that for multiple zeta values. We also exploit the Hopf algebra structure of the quasi-symmetric functions to perform calculations with multiple harmonic sums mod p, and obtain, for each weight n through nine, a set of generators for the space of weight-n multiple harmonic sums mod p. When combined with recent work, the results of this paper offer significant evidence that the number of quantities needed to generate the weight-n multiple harmonic sums mod p is the nth Padovan number (OEIS sequence A000931).
引用
收藏
页码:345 / 366
页数:22
相关论文
共 30 条
  • [1] [Anonymous], 1986, ENUMERATIVE COMBINAT
  • [2] [Anonymous], MATH010359 ARXIV
  • [3] [Anonymous], 1977, Lecture Notes in Math., DOI DOI 10.1007/BFB0090017
  • [4] [Anonymous], NOVA ACTA ACAD SCI 1
  • [5] [Anonymous], PHYS REV D
  • [6] [Anonymous], 1984, Combinatorics and algebra, DOI DOI 10.1090/CONM/034/777705
  • [7] BOWMAN D, 2001, CONT MATH, V291, P71
  • [8] IRREGULAR PRIMES AND CYCLOTOMIC INVARIANTS TO 4 MILLION
    BUHLER, J
    CRANDALL, R
    ERNVALL, R
    METSANKYLA, T
    [J]. MATHEMATICS OF COMPUTATION, 1993, 61 (203) : 151 - 153
  • [9] On posets and Hopf algebras
    Ehrenborg, R
    [J]. ADVANCES IN MATHEMATICS, 1996, 119 (01) : 1 - 25
  • [10] NONCOMMUTATIVE SYMMETRICAL FUNCTIONS
    GELFAND, IM
    KROB, D
    LASCOUX, A
    LECLERC, B
    RETAKH, VS
    THIBON, JY
    [J]. ADVANCES IN MATHEMATICS, 1995, 112 (02) : 218 - 348