QUASI-SYMMETRIC FUNCTIONS AND MOD p MULTIPLE HARMONIC SUMS

被引:49
作者
Hoffman, Michael E. [1 ]
机构
[1] US Naval Acad, Dept Math, Annapolis, MD 21402 USA
关键词
multiple harmonic sums; mod p harmonic sums; quasi-symmetric functions; IRREGULAR PRIMES; ALGEBRA;
D O I
10.2206/kyushujm.69.345
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We present a number of results about (finite) multiple harmonic sums modulo a prime, which provide interesting parallels to known results about multiple zeta values (i.e. infinite multiple harmonic series). In particular, we prove a 'duality' result for mod p harmonic sums similar to (but distinct from) that for multiple zeta values. We also exploit the Hopf algebra structure of the quasi-symmetric functions to perform calculations with multiple harmonic sums mod p, and obtain, for each weight n through nine, a set of generators for the space of weight-n multiple harmonic sums mod p. When combined with recent work, the results of this paper offer significant evidence that the number of quantities needed to generate the weight-n multiple harmonic sums mod p is the nth Padovan number (OEIS sequence A000931).
引用
收藏
页码:345 / 366
页数:22
相关论文
共 30 条
[1]  
[Anonymous], 1986, ENUMERATIVE COMBINAT
[2]  
[Anonymous], MATH010359 ARXIV
[3]  
[Anonymous], 1977, Lecture Notes in Math., DOI DOI 10.1007/BFB0090017
[4]  
[Anonymous], NOVA ACTA ACAD SCI 1
[5]  
[Anonymous], PHYS REV D
[6]  
[Anonymous], 1984, Combinatorics and algebra, DOI DOI 10.1090/CONM/034/777705
[7]  
BOWMAN D, 2001, CONT MATH, V291, P71
[8]   IRREGULAR PRIMES AND CYCLOTOMIC INVARIANTS TO 4 MILLION [J].
BUHLER, J ;
CRANDALL, R ;
ERNVALL, R ;
METSANKYLA, T .
MATHEMATICS OF COMPUTATION, 1993, 61 (203) :151-153
[9]   On posets and Hopf algebras [J].
Ehrenborg, R .
ADVANCES IN MATHEMATICS, 1996, 119 (01) :1-25
[10]   NONCOMMUTATIVE SYMMETRICAL FUNCTIONS [J].
GELFAND, IM ;
KROB, D ;
LASCOUX, A ;
LECLERC, B ;
RETAKH, VS ;
THIBON, JY .
ADVANCES IN MATHEMATICS, 1995, 112 (02) :218-348