Adaptive Component-Wise Multiple-Try Metropolis Sampling

被引:3
作者
Yang, Jinyoung [1 ]
Levi, Evgeny [1 ]
Craiu, Radu, V [1 ]
Rosenthal, Jeffrey S. [1 ]
机构
[1] Univ Toronto, Dept Stat Sci, Toronto, ON M5S 3G3, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Adaptive Markov chain Monte Carlo; Component-wise Metropolis-Hastings; Multiple-try Metropolis; MARKOV-CHAINS; ERGODICITY; HASTINGS;
D O I
10.1080/10618600.2018.1513365
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
One of the most widely used samplers in practice is the component-wise Metropolis-Hastings (CMH) sampler that updates in turn the components of a vector-valued Markov chain using accept-reject moves generated from a proposal distribution. When the target distribution of a Markov chain is irregularly shaped, a "good" proposal distribution for one region of the state-space might be a "poor" one for another region. We consider a component-wise multiple-try Metropolis (CMTM) algorithm that chooses from a set of candidate moves sampled from different distributions. The computational efficiency is increased using an adaptation rule for the CMTM algorithm that dynamically builds a better set of proposal distributions as the Markov chain runs. The ergodicity of the adaptive chain is demonstrated theoretically. The performance is studied via simulations and real data examples. Supplementary material for this article is available online.
引用
收藏
页码:276 / 289
页数:14
相关论文
共 33 条
[21]   DRAM: Efficient adaptive MCMC [J].
Haario, Heikki ;
Laine, Marko ;
Mira, Antonietta ;
Saksman, Eero .
STATISTICS AND COMPUTING, 2006, 16 (04) :339-354
[22]   MONTE-CARLO SAMPLING METHODS USING MARKOV CHAINS AND THEIR APPLICATIONS [J].
HASTINGS, WK .
BIOMETRIKA, 1970, 57 (01) :97-&
[23]   The multiple-try method and local optimization in metropolis sampling [J].
Liu, JS ;
Liang, FM ;
Wong, WH .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2000, 95 (449) :121-134
[24]   EQUATION OF STATE CALCULATIONS BY FAST COMPUTING MACHINES [J].
METROPOLIS, N ;
ROSENBLUTH, AW ;
ROSENBLUTH, MN ;
TELLER, AH ;
TELLER, E .
JOURNAL OF CHEMICAL PHYSICS, 1953, 21 (06) :1087-1092
[25]  
Neiswanger, 2013, ARXIV PREPRINT ARXIV
[26]  
Reihaneh E., 2016, CANADIAN J STAT, V46, P147
[27]   Coupling and ergodicity of adaptive Markov chain Monte Carlo algorithms [J].
Roberts, Gareth O. ;
Rosenthal, Jeffrey S. .
JOURNAL OF APPLIED PROBABILITY, 2007, 44 (02) :458-475
[28]   Examples of Adaptive MCMC [J].
Roberts, Gareth O. ;
Rosenthal, Jeffrey S. .
JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2009, 18 (02) :349-367
[29]  
Roberts Gareth O, 2004, Probability Surveys, V1, P20, DOI [DOI 10.1214/154957804100000024, 10.1214/154957804100000024, 10.1214/ 154957804100000024]
[30]   Optimal scaling for various Metropolis-Hastings algorithms [J].
Roberts, GO ;
Rosenthal, JS .
STATISTICAL SCIENCE, 2001, 16 (04) :351-367