Multicriteria gene screening for analysis of differential expression with DNA microarrays

被引:13
作者
Hero, AO [1 ]
Fleury, G
Mears, AJ
Swaroop, A
机构
[1] Univ Michigan, Dept Elect Engn, Ann Arbor, MI 48109 USA
[2] Univ Michigan, Dept Comp Sci, Ann Arbor, MI 48109 USA
[3] Univ Michigan, Dept Biomed Engn, Ann Arbor, MI 48109 USA
[4] Univ Michigan, Dept Stat, Ann Arbor, MI 48109 USA
[5] Ecole Super Elect, Serv Mesures, F-91192 Gif Sur Yvette, France
[6] Univ Michigan, Sch Med, Dept Ophthalmol & Visual Sci, Ann Arbor, MI 48109 USA
[7] Univ Michigan, Sch Med, Dept Human Genet, Ann Arbor, MI 48109 USA
[8] Univ Ottawa, Inst Eye, Ottawa Hlth Res Inst, Ottawa, ON K1H 8L6, Canada
关键词
bioinformatics; gene filtering; gene profiling multiple comparisons; familywise error rates;
D O I
10.1155/S1110865704310036
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper introduces a statistical methodology for the identification of differentially expressed genes in DNA microarray experiments based on multiple criteria. These criteria are false discovery rate (FDR), variance-normalized differential expression levels (paired t statistics), and minimum acceptable difference (MAD). The methodology also provides a set of simultaneous FDR confidence intervals on the true expression differences. The analysis can be implemented as a two-stage algorithm in which there is an initial screen that controls only FDR, which is then followed by a second screen which controls both FDR and MAD. It can also be implemented by computing and thresholding the set of FDR P values for each gene that satisfies the MAD criterion. We illustrate the procedure to identify differentially expressed genes from a wild type versus knockout comparison of microarray data.
引用
收藏
页码:43 / 52
页数:10
相关论文
共 34 条
[1]  
*AFF, 2002, NETAFFX US GUID
[2]   Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling [J].
Alizadeh, AA ;
Eisen, MB ;
Davis, RE ;
Ma, C ;
Lossos, IS ;
Rosenwald, A ;
Boldrick, JG ;
Sabet, H ;
Tran, T ;
Yu, X ;
Powell, JI ;
Yang, LM ;
Marti, GE ;
Moore, T ;
Hudson, J ;
Lu, LS ;
Lewis, DB ;
Tibshirani, R ;
Sherlock, G ;
Chan, WC ;
Greiner, TC ;
Weisenburger, DD ;
Armitage, JO ;
Warnke, R ;
Levy, R ;
Wilson, W ;
Grever, MR ;
Byrd, JC ;
Botstein, D ;
Brown, PO ;
Staudt, LM .
NATURE, 2000, 403 (6769) :503-511
[3]   Two-stage testing in microarray analysis: What is gained? [J].
Allison, DB ;
Coffey, CS .
JOURNALS OF GERONTOLOGY SERIES A-BIOLOGICAL SCIENCES AND MEDICAL SCIENCES, 2002, 57 (05) :B189-B192
[4]  
[Anonymous], 1992, RECOMBINANT DNA
[5]  
[Anonymous], 1993, Resampling-based multiple testing: Examples and methods for P-value adjustment
[6]  
[Anonymous], 2003, Statistical Analysis of Gene Expression Microarray Data. Interdisciplinary Statistics
[7]   Gene expression informatics - it's all in your mine [J].
Bassett, DE ;
Eisen, MB ;
Boguski, MS .
NATURE GENETICS, 1999, 21 (Suppl 1) :51-55
[8]  
BENAJMINI Y, UNPUB FALSE DISCOVER
[9]   CONTROLLING THE FALSE DISCOVERY RATE - A PRACTICAL AND POWERFUL APPROACH TO MULTIPLE TESTING [J].
BENJAMINI, Y ;
HOCHBERG, Y .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 1995, 57 (01) :289-300
[10]  
BENJAMINI Y, 2001, 0103 TEL AVIV U DEP