Quasiperiodic waves and asymptotic behavior for the nonisospectral and variable-coefficient KdV equation

被引:0
作者
Zhang, Yi [1 ]
Jin, Rongjie [1 ]
Dong, Kanghui [1 ]
机构
[1] Zhejiang Normal Univ, Dept Math, Jinhua 321004, Peoples R China
来源
NONLINEAR AND MODERN MATHEMATICAL PHYSICS | 2013年 / 1562卷
关键词
nvcKdV equation; Hirota bilinear method; Riemann theta function; Periodic wave solutions; Soliton solutions; NONLINEAR SCHRODINGER MODEL; N-SOLITON SOLUTION; DE-VRIES EQUATION; BACKLUND TRANSFORMATION; SYMBOLIC COMPUTATION; BOUSSINESQ EQUATION; EVOLUTION-EQUATIONS; BILINEAR EQUATIONS; GRAMMIAN SOLUTIONS; OPTICAL-FIBERS;
D O I
10.1063/1.4828698
中图分类号
O59 [应用物理学];
学科分类号
摘要
In this paper, quasiperiodic waves and asymptotic behavior for the nonisospectral and variable-coefficient KdV (nvcKdV) equation are considered. The Hirota bilinear method is extended to explicitly construct multiperiodic (quasiperiodic) wave solutions for the nvcKdV equation. And a limiting procedure is presented to analyze asymptotic behavior of the one-and two-periodic waves in details. The exact relations between the periodic wave solutions and the well-known soliton solutions are established. It is rigorously shown that the periodic wave solutions tend to the soliton solutions under a small amplitude limit.
引用
收藏
页码:257 / 264
页数:8
相关论文
共 29 条
[1]  
Ablowitz M.J., 1991, Nonlinear Evolution Equations and Inverse Scattering
[2]   NONPROPAGATING SOLITONS OF THE VARIABLE-COEFFICIENT AND NONISOSPECTRAL KORTEWEG-DEVRIES EQUATION [J].
CHAN, WL ;
LI, KS .
JOURNAL OF MATHEMATICAL PHYSICS, 1989, 30 (11) :2521-2527
[3]  
Fan E. G., 2009, J PHYS A, V42
[4]  
Fan EG, 1998, APPL MATH MECH-ENGL, V19, P713
[5]   The integrability of nonisospectral and variable-coefficient KdV equation with binary Bell polynomials [J].
Fan, Engui .
PHYSICS LETTERS A, 2011, 375 (03) :493-497
[6]   On the periodic solutions for both nonlinear differential and difference equations: A unified approach [J].
Fan, Engui ;
Chow, Kwok Wing .
PHYSICS LETTERS A, 2010, 374 (35) :3629-3634
[7]   BILINEARIZATION OF SOLITON-EQUATIONS [J].
HIROTA, R .
JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1982, 51 (01) :323-331
[8]   A vector potential KdV equation and vector Ito equation: soliton solutions, bilinear Backlund transformations and Lax pairs [J].
Hirota, R ;
Hu, XB ;
Tang, XY .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2003, 288 (01) :326-348
[9]  
Hirota R., 2004, DIRECT METHODS SOLIT
[10]   Lax pair, Backlund transformation and N-soliton-like solution for a variable-coefficient Gardner equation from nonlinear lattice, plasma physics and ocean dynamics with symbolic computation [J].
Li, Juan ;
Xu, Tao ;
Meng, Xiang-Hua ;
Zhang, Ya-Xing ;
Zhang, Hai-Qiang ;
Tian, Bo .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2007, 336 (02) :1443-1455