Core-shell nanomaterials: Applications in energy storage and conversion

被引:134
|
作者
Feng, Hao-peng [1 ,2 ]
Tang, Lin [1 ,2 ]
Zeng, Guang-ming [1 ,2 ]
Zhou, Yaoyu [3 ]
Deng, Yao-cheng [3 ]
Ren, Xiaoya [1 ,2 ]
Song, Biao [1 ,2 ]
Liang, Chao [1 ,2 ]
Wei, Meng-yun [1 ,2 ,4 ]
Yu, Jiang-fang [1 ,2 ]
机构
[1] Hunan Univ, Coll Environm Sci & Engn, Changsha 410082, Hunan, Peoples R China
[2] Hunan Univ, Minist Educ, Key Lab Environm Biol & Pollut Control, Changsha 410082, Hunan, Peoples R China
[3] Hunan Agr Univ, Coll Resources & Environm, Changsha 410128, Hunan, Peoples R China
[4] Hunan Prov Cooperat Innovat Ctr Construct & Dev, Dongting Lake Ecol Econ Zone, Changde 415000, Peoples R China
基金
中国国家自然科学基金;
关键词
Core-shell; Electrochemistry; Energy storage; Energy conversion; LITHIUM-ION BATTERY; SENSITIZED SOLAR-CELLS; PHOTOCATALYTIC HYDROGEN-PRODUCTION; HIGH-PERFORMANCE SUPERCAPACITORS; HIERARCHICAL POROUS CARBON; CORE/SHELL NANOROD ARRAYS; BALL-MILLING PREPARATION; AT-C NANOPARTICLES; NANOWIRE ARRAYS; ANODE MATERIALS;
D O I
10.1016/j.cis.2019.03.001
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Materials with core-shell structures have attracted increasing attention in recent years due to their unique properties and wide applications in energy storage and conversion systems. Through reasonable adjustments of their shells and cores, various types of core-shell structured materials can be fabricated with favorable properties that play significant roles in energy storage and conversion processes. The core-shell material can provide an effective solution to the current energy crisis. Various synthetic strategies used to fabricate core-shell materials, including the atomic layer deposition, chemical vapor deposition and solvothermal method, are briefly mentioned here. A state-of-the-art review of their applications in energy storage and conversion is summarized. The involved energy storage includes supercapacitors, li-ions batteries and hydrogen storage, and the corresponding energy conversion technologies contain quantum dot solar cells, dye-sensitized solar cells, silicon/organic solar cells and fuel cells. In addition, the correlation between the core-shell structures and their performance in energy storage and conversion is introduced, and this finding can provide guidance in designing original core-shell structures with advanced properties. (C) 2019 Elsevier B.V. All rights reserved.
引用
收藏
页码:26 / 46
页数:21
相关论文
共 50 条
  • [1] MoS2-based core-shell nanostructures: Highly efficient materials for energy storage and conversion applications
    Kour, Pawanpreet
    Deeksha
    Kour, Simran
    Sharma, A. L.
    Yadav, Kamlesh
    JOURNAL OF ENERGY STORAGE, 2023, 66
  • [2] Carbon-based core-shell nanostructured materials for electrochemical energy storage
    Feng, Hao-peng
    Tang, Lin
    Zeng, Guang-ming
    Tang, Jing
    Deng, Yao-cheng
    Yan, Ming
    Liu, Ya-ni
    Zhou, Yao-yu
    Ren, Xiao-ya
    Chen, Song
    JOURNAL OF MATERIALS CHEMISTRY A, 2018, 6 (17) : 7310 - 7337
  • [3] Core-Shell Nanostructure Design in Polymer Nanocomposite Capacitors for Energy Storage Applications
    Luo, Hang
    Chen, Sheng
    Liu, Lihong
    Zhou, Xuefan
    Ma, Chao
    Liu, Weiwei
    Zhang, Dou
    ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2019, 7 (03) : 3145 - 3153
  • [4] Carbon Nanomaterials for Advanced Energy Conversion and Storage
    Dai, Liming
    Chang, Dong Wook
    Baek, Jong-Beom
    Lu, Wen
    SMALL, 2012, 8 (08) : 1130 - 1166
  • [5] Core-Shell Colloidal Quantum Dots for Energy Conversion
    Jin, Lei
    Selopal, Gurpreet Singh
    Sun, Xiao Wei
    Rosei, Federico
    ADVANCED ENERGY MATERIALS, 2025, 15 (01)
  • [6] Nanomaterials for energy conversion and storage
    Zhang, Qifeng
    Uchaker, Evan
    Candelaria, Stephanie L.
    Cao, Guozhong
    CHEMICAL SOCIETY REVIEWS, 2013, 42 (07) : 3127 - 3171
  • [7] Recent advances of porous transition metal-based nanomaterials for electrochemical energy conversion and storage applications
    Jin, Wei
    Maduraiveeran, Govindhan
    MATERIALS TODAY ENERGY, 2019, 13 : 64 - 84
  • [8] Graphene-based hybrid materials and their applications in energy storage and conversion
    Zhou Ding
    Cui Yi
    Han BaoHang
    CHINESE SCIENCE BULLETIN, 2012, 57 (23): : 2983 - 2994
  • [9] Perspective on advanced nanomaterials used for energy storage and conversion
    Huang, Hsuanyi
    Li, Rong
    Li, Cuixia
    Zheng, Feng
    Ramirez, Giovanni A.
    Houf, William
    Zhen, Qiang
    Bashir, Sajid
    Liu, Jingbo Louise
    PURE AND APPLIED CHEMISTRY, 2022, 94 (08) : 959 - 981
  • [10] Construction of hierarchical functional nanomaterials for energy conversion and storage
    Shen, Jianhua
    Wang, Yu
    Gu, Kailun
    Zhu, Yihua
    Hu, Yanjie
    Li, Chunzhong
    PARTICUOLOGY, 2020, 48 : 34 - 47