A generalized correlation for predicting the thermal conductivity of composites with heterogeneous nanofillers

被引:21
作者
Ngo, Ich-Long [1 ]
Byon, Chan [1 ]
机构
[1] Yeungnam Univ, Sch Mech Engn, Gyongsan 712749, South Korea
基金
新加坡国家研究基金会;
关键词
Composite material; Finite element method; Heterogeneous fillers; Nanoparticle; Thermal conductivity; MECHANICAL-PROPERTIES; POLYMER COMPOSITES;
D O I
10.1016/j.ijheatmasstransfer.2015.06.069
中图分类号
O414.1 [热力学];
学科分类号
摘要
Adding dual kinds of nanoparticle fillers with higher thermal conductivity (TC) into matrix materials provides versatile and effective means for enhancing the TC of polymer materials. In this study, the effective thermal conductivity (ETC) of composite materials with heterogeneous-filler-nanoparticles is investigated based on an extensive FEM numerical study, in terms of the TC ratios between the filler particles and the matrix material (kappa(1) and kappa(2)), and the volume fractions (VFs) of each filler particle (phi(1) and phi(2)). The results indicate that the ETC of composite material significantly depends on TC ratio between two fillers (kappa(1)/kappa(2)). In addition, there exists a maximum ETC according to each sum of TC ratio (kappa(1) + kappa(2)). The asymmetric behavior of ETC in terms of the TC ratio between two fillers becomes symmetric when two fillers has the same VF. Based on the numerical results for a wide range of geometric parameters, a generalized correlation for predicting ETC is proposed as a function of four non-dimensional parameters: phi(1), phi(2), kappa(1), and kappa(2). The correlation is valid for the entire practical range of parameters (0 < phi(1) or phi(2) < 0.4; 1 < kappa(1) or kappa(2) < 10(4)), and can be widely utilized for predicting the TC of nanoparticle-added composite materials. (C) 2015 Elsevier Ltd. All rights reserved.
引用
收藏
页码:894 / 899
页数:6
相关论文
共 50 条
[41]   Measurement of thermal conductivity of triaxial braided composites [J].
Kiani, S. ;
Chan, W. S. ;
Haji-Sheikh, A. .
JOURNAL OF COMPOSITE MATERIALS, 2008, 42 (12) :1159-1177
[42]   Influence of Nanoparticles on Thermal and Electrical Conductivity of Composites [J].
Coetzee, Divan ;
Venkataraman, Mohanapriya ;
Militky, Jiri ;
Petru, Michal .
POLYMERS, 2020, 12 (04)
[43]   Studies on the thermal conductivity of HDPE/C composites [J].
Wang, Q ;
Gao, J ;
Wang, R ;
Hua, ZK .
CHEMICAL JOURNAL OF CHINESE UNIVERSITIES-CHINESE, 1999, 20 (09) :1480-1482
[44]   Effect of microstructure on thermal conductivity of polymer composites [J].
Yang, Yue ;
Shu, Junjie ;
Chen, Peng ;
Xia, Ru ;
Qian, Jiasheng ;
Yang, Bin ;
Miao, Jibin ;
Su, Lifen ;
Zheng, Zhengzhi ;
Cao, Ming .
MACROMOLECULAR RESEARCH, 2017, 25 (04) :344-351
[45]   An extensive study on enhancing the thermal conductivity of core-shell nanoparticle composites using finite element method [J].
Ngo, Ich-Long ;
Byon, Chan .
INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2016, 101 :147-155
[46]   Effect of hybrid nanofillers on thermal conductivity of composite phase change materials [J].
Ding, Qing ;
Fang, Xin ;
Fan, Li-Wu ;
Cheng, Guan-Hua ;
Yu, Zi-Tao ;
Hu, Ya-Cai .
Zhejiang Daxue Xuebao (Gongxue Ban)/Journal of Zhejiang University (Engineering Science), 2015, 49 (02) :330-335
[47]   THERMAL-CONDUCTIVITY OF COMPOSITES [J].
KLEMENS, PG .
INTERNATIONAL JOURNAL OF THERMOPHYSICS, 1990, 11 (05) :971-976
[48]   Estimation of the thermal conductivity of composites [J].
Vincent J. Ervin ;
James W. Klett ;
Chad M. Mundt .
Journal of Materials Science, 1999, 34 :3545-3553
[49]   Thermal Conductivity of Diamond Composites [J].
Kidalov, Sergey V. ;
Shakhov, Fedor M. .
MATERIALS, 2009, 2 (04) :2467-2495
[50]   Derivation of governing equation for predicting thermal conductivity of composites with spherical inclusions and its applications [J].
Lee, Jae-Kon ;
Kim, Jin-Gon .
PHYSICS LETTERS A, 2011, 375 (42) :3739-3744