Linear and nonlinear degenerate boundary value problems in Besov spaces

被引:1
作者
Shakhmurov, Veli B. [1 ]
Agarwal, Ravi P. [2 ]
机构
[1] Okan Univ, Dept Elect Engn & Commun, TR-34959 Istanbul, Turkey
[2] Florida Inst Technol, Dept Math Sci, Melbourne, FL 32901 USA
关键词
Boundary value problems; Differential-operator equations; Banach-valued Besov spaces; Operator-valued multipliers; Interpolation of Banach spaces; FOURIER MULTIPLIER THEOREMS; IMBEDDING THEOREMS;
D O I
10.1016/j.mcm.2008.04.008
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
The boundary value problems for linear and nonlinear degenerate differential-operator equations in Banach-valued Besov spaces are studied. Several conditions for the separability of linear elliptic problems are given. Moreover, the positivity and the analytic semigroup properties of associated differential operators are obtained. By using these results, the maximal regularity of degenerate boundary value problems for nonlinear differential-operator equations is derived. As applications, boundary value problems for infinite systems of degenerate equations in Besov spaces are studied. Published by Elsevier Ltd
引用
收藏
页码:1244 / 1259
页数:16
相关论文
共 32 条
[1]   Maximal regular boundary value problems in Banach-valued weighted space [J].
Agarwal, Ravi P. ;
Bohner, Martin ;
Shakhmurov, Veli B. .
BOUNDARY VALUE PROBLEMS, 2005, 2005 (01) :9-42
[2]  
Amann H, 1997, MATH NACHR, V186, P5
[3]  
Amann H., 2000, Glas. Mat. Ser., V35, P161
[4]  
Amann H., 1995, LINEAR QUASILINEAR E, V1
[5]  
[Anonymous], TEUBNER TEXTE MATH
[7]  
AUBIN JP, 1970, REND SEM PADOVA, V43, P1
[8]  
Besov OV., 1975, Integral Representations of Functions and Imbedding Theorems
[9]  
Burkholder D.L., 1983, P C HARM AN HON A ZY, P270
[10]  
Clément P, 2000, STUD MATH, V138, P135