Optimal approximability of solutions of singularly perturbed two-point boundary value problems

被引:10
作者
Kellogg, RB [1 ]
Stynes, M [1 ]
机构
[1] UNIV COLL CORK,DEPT MATH,CORK,IRELAND
关键词
n-width; singularly perturbed; differential equation; convection-diffusion; reaction-diffusion;
D O I
10.1137/S0036142995290269
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Using the theory of n-widths, the approximability of solutions of singularly perturbed reaction-diffusion and convection-diffusion problems in one dimension is quantified.
引用
收藏
页码:1808 / 1816
页数:9
相关论文
共 4 条
[1]   NECESSARY CONDITIONS TO AVOID NUMERICAL LOCKING IN SINGULAR PERTURBATIONS - APPLICATION TO ARCH EQUATIONS [J].
CHENAIS, D ;
ZERNER, M .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 1994, 115 (1-2) :145-163
[2]  
Lorentz G.G., 1986, Approximation of functions
[3]  
PINKUS A, 1985, N WIDTHS APPROX THEO
[4]   FINITE-ELEMENT METHODS FOR SINGULARLY PERTURBED HIGH-ORDER ELLIPTIC 2-POINT BOUNDARY-VALUE-PROBLEMS .1. REACTION-DIFFUSION-TYPE PROBLEMS [J].
SUN, GF ;
STYNES, M .
IMA JOURNAL OF NUMERICAL ANALYSIS, 1995, 15 (01) :117-139