SKELLAMSHRINK: POISSON INTENSITY ESTIMATION FOR VECTOR-VALUED DATA

被引:6
作者
Hirakawa, Keigo [1 ]
Wolfe, Patrick J. [1 ]
机构
[1] Harvard Univ, Stat & Informat Sci Lab, Sch Engn & Appl Sci, Cambridge, MA 02138 USA
来源
2009 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, VOLS 1- 8, PROCEEDINGS | 2009年
关键词
Filterbank transforms; Poisson distribution; Skellam distribution; SkellamShrink; wavelets; WAVELET SHRINKAGE; EXPONENTIAL-FAMILIES; VARIANCE; MODELS;
D O I
10.1109/ICASSP.2009.4960365
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
Owing to the stochastic nature of discrete processes such as photon counts in imaging, a variety of real-world data are well modeled as Poisson random variables whose means are in turn proportional to an underlying vector-valued signal of interest. Certain wavelet and filterbank transform coefficients corresponding to measurements of this type are distributed as sums and differences of Poisson counts, taking in the simplest case the so-called Skellam distribution. We show that a Skellam mean estimator provides a Poisson intensity estimation method based on shrinkage of filterbank coefficients, and a means of estimating the risk of any Skellam mean estimator is derived in closed form under a frequentist model.
引用
收藏
页码:3441 / 3444
页数:4
相关论文
共 24 条
[1]  
ANSCOMBE FJ, 1948, BIOMETRIKA, V35, P246, DOI 10.1093/biomet/35.3-4.246
[2]   Wavelet shrinkage for natural exponential families with quadratic variance functions [J].
Antoniadis, A ;
Sapatinas, T .
BIOMETRIKA, 2001, 88 (03) :805-820
[3]  
Bartlett M. S., 1936, Journal of the Royal Statistical Society, V3, P68
[4]  
Besbeas P, 2004, INT STAT REV, V72, P209
[5]   SIMULTANEOUS ESTIMATION OF MEANS OF INDEPENDENT POISSON LAWS [J].
CLEVENSON, ML ;
ZIDEK, JV .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1975, 70 (351) :698-705
[6]   IDEAL SPATIAL ADAPTATION BY WAVELET SHRINKAGE [J].
DONOHO, DL ;
JOHNSTONE, IM .
BIOMETRIKA, 1994, 81 (03) :425-455
[7]   Adapting to unknown smoothness via wavelet shrinkage [J].
Donoho, DL ;
Johnstone, IM .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1995, 90 (432) :1200-1224
[8]  
Fisz M., 1955, Colloq. Math., V3, P138, DOI DOI 10.4064/CM-3-2-138-146
[9]   TRANSFORMATIONS RELATED TO THE ANGULAR AND THE SQUARE ROOT [J].
FREEMAN, MF ;
TUKEY, JW .
ANNALS OF MATHEMATICAL STATISTICS, 1950, 21 (04) :607-611
[10]   A Haar-Fisz algorithm for Poisson intensity estimation [J].
Fryzlewicz, P ;
Nason, GP .
JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2004, 13 (03) :621-638