New oscillation solutions of impulsive conformable partial differential equations

被引:2
作者
Bazighifan, Omar [1 ]
Al-Moneef, Areej A. [2 ]
Ali, Hasan Ali [3 ,4 ]
Raja, Thangaraj [5 ]
Nonlaopon, Kamsing [6 ]
Nofal, Taher A. [7 ]
机构
[1] Int Telemat Univ Uninettuno, Sect Math, Corso Vittorio Emanuele 2,39, I-00186 Rome, Italy
[2] Princess Nourah Bint Abdulrahman Univ, Dept Math Sci, Coll Sci, POB 84428, Riyadh 11671, Saudi Arabia
[3] Univ Basrah, Dept Math, Coll Educ Pure Sci, Basrah 61001, Iraq
[4] Univ Debrecen, Doctoral Sch Math & Computat Sci, Pf 400, H-4002 Debrecen, Hungary
[5] Anna Univ, Dept Math, Mahendra Coll Engn, Chennai, Tamil Nadu, India
[6] Khon Kaen Univ, Dept Math, Fac Sci, Khon Kaen 40002, Thailand
[7] Taif Univ, Dept Math, Coll Sci, POB 11099, Taif 21944, Saudi Arabia
来源
AIMS MATHEMATICS | 2022年 / 7卷 / 09期
关键词
fractional integrals; nonlinear equations; conformable partial differential equations; impulse; oscillation; damping term; distributed deviating arguments; FORCED OSCILLATION; SYSTEMS;
D O I
10.3934/math.2022892
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Partial fractional differential equations are fundamental in many physical and biological applications, engineering and medicine, in addition to their importance in the development of several mathematical and computer models. This study's main objective is to identify the necessary conditions for the oscillation of impulsive conformable partial differential equation systems with the Robin boundary condition. The important findings of the study are stated and demonstrated with a robust example at the end of the study.
引用
收藏
页码:16328 / 16348
页数:21
相关论文
共 48 条
[1]   A new fifth-order iterative method free from second derivative for solving nonlinear equations [J].
Abdul-Hassan, Noori Yasir ;
Ali, Ali Hasan ;
Park, Choonkil .
JOURNAL OF APPLIED MATHEMATICS AND COMPUTING, 2022, 68 (05) :2877-2886
[2]   A Generalized Definition of the Fractional Derivative with Applications [J].
Abu-Shady, M. ;
Kaabar, Mohammed K. A. .
MATHEMATICAL PROBLEMS IN ENGINEERING, 2021, 2021
[3]   Dynamics of the worm transmission in wireless sensor network in the framework of fractional derivatives [J].
Achar, Sindhu J. ;
Baishya, Chandrali ;
Kaabar, Mohammed K. A. .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2022, 45 (08) :4278-4294
[4]   Oscillation of solutions of systems of neutral type partial functional differential equations [J].
Agarwal, RP ;
Meng, FW ;
Li, WN .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2002, 44 (5-6) :777-786
[5]   RETRACTED: A Comparison of Finite Difference and Finite Volume Methods with Numerical Simulations: Burgers Equation Model (Retracted article. See vol. 2023, 2023) [J].
Ali, Ali Hasan ;
Jaber, Ahmed Shawki ;
Yaseen, Mustafa T. ;
Rasheed, Mohammed ;
Bazighifan, Omer ;
Nofal, Taher A. .
COMPLEXITY, 2022, 2022
[6]   A Study of Continuous Dependence and Symmetric Properties of Double Diffusive Convection: Forchheimer Model [J].
Ali, Ali Hasan ;
Meften, Ghazi Abed ;
Bazighifan, Omar ;
Iqbal, Mehak ;
Elaskar, Sergio ;
Awrejcewicz, Jan .
SYMMETRY-BASEL, 2022, 14 (04)
[7]   Novel Oscillation Theorems and Symmetric Properties of Nonlinear Delay Differential Equations of Fourth-Order with a Middle Term [J].
Almarri, Barakah ;
Janaki, S. ;
Ganesan, V ;
Ali, Ali Hasan ;
Nonlaopon, Kamsing ;
Bazighifan, Omar .
SYMMETRY-BASEL, 2022, 14 (03)
[8]   Nonlinear Differential Equations with Distributed Delay: Some New Oscillatory Solutions [J].
Almarri, Barakah ;
Ali, Ali Hasan ;
Lopes, Antonio M. ;
Bazighifan, Omar .
MATHEMATICS, 2022, 10 (06)
[9]   Symmetric and Non-Oscillatory Characteristics of the Neutral Differential Equations Solutions Related to p-Laplacian Operators [J].
Almarri, Barakah ;
Ali, Ali Hasan ;
Al-Ghafri, Khalil S. ;
Almutairi, Alanoud ;
Bazighifan, Omar ;
Awrejcewicz, Jan .
SYMMETRY-BASEL, 2022, 14 (03)
[10]  
[Anonymous], 1996, Theory and Applications of Partial Functional Differential Equations