New oscillation solutions of impulsive conformable partial differential equations

被引:2
|
作者
Bazighifan, Omar [1 ]
Al-Moneef, Areej A. [2 ]
Ali, Hasan Ali [3 ,4 ]
Raja, Thangaraj [5 ]
Nonlaopon, Kamsing [6 ]
Nofal, Taher A. [7 ]
机构
[1] Int Telemat Univ Uninettuno, Sect Math, Corso Vittorio Emanuele 2,39, I-00186 Rome, Italy
[2] Princess Nourah Bint Abdulrahman Univ, Dept Math Sci, Coll Sci, POB 84428, Riyadh 11671, Saudi Arabia
[3] Univ Basrah, Dept Math, Coll Educ Pure Sci, Basrah 61001, Iraq
[4] Univ Debrecen, Doctoral Sch Math & Computat Sci, Pf 400, H-4002 Debrecen, Hungary
[5] Anna Univ, Dept Math, Mahendra Coll Engn, Chennai, Tamil Nadu, India
[6] Khon Kaen Univ, Dept Math, Fac Sci, Khon Kaen 40002, Thailand
[7] Taif Univ, Dept Math, Coll Sci, POB 11099, Taif 21944, Saudi Arabia
来源
AIMS MATHEMATICS | 2022年 / 7卷 / 09期
关键词
fractional integrals; nonlinear equations; conformable partial differential equations; impulse; oscillation; damping term; distributed deviating arguments; FORCED OSCILLATION; SYSTEMS;
D O I
10.3934/math.2022892
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Partial fractional differential equations are fundamental in many physical and biological applications, engineering and medicine, in addition to their importance in the development of several mathematical and computer models. This study's main objective is to identify the necessary conditions for the oscillation of impulsive conformable partial differential equation systems with the Robin boundary condition. The important findings of the study are stated and demonstrated with a robust example at the end of the study.
引用
收藏
页码:16328 / 16348
页数:21
相关论文
共 50 条
  • [1] INTERVAL OSCILLATION CRITERIA FOR IMPULSIVE CONFORMABLE PARTIAL DIFFERENTIAL EQUATIONS
    Chatzarakis, G. E.
    Logaarasi, K.
    Raja, T.
    Sadhasivam, V
    APPLICABLE ANALYSIS AND DISCRETE MATHEMATICS, 2019, 13 (01) : 325 - 345
  • [2] Oscillation of impulsive conformable fractional differential equations
    Tariboon, Jessada
    Ntouyas, Sotiris K.
    OPEN MATHEMATICS, 2016, 14 : 497 - 508
  • [3] INTERVAL OSCILLATION CRITERIA FOR IMPULSIVE CONFORMABLE FRACTIONAL DIFFERENTIAL EQUATIONS
    Bolat, Yasar
    Raja, Thangaraj
    Logaarasi, Kandhasamy
    Sadhasivam, Vadivel
    COMMUNICATIONS FACULTY OF SCIENCES UNIVERSITY OF ANKARA-SERIES A1 MATHEMATICS AND STATISTICS, 2020, 69 (01): : 815 - 831
  • [4] Asymptotic behavior of conformable fractional impulsive partial differential equations
    Logaarasi, K.
    Sadhasivam, V.
    Italian Journal of Pure and Applied Mathematics, 2020, 44 : 669 - 681
  • [5] Asymptotic behavior of conformable fractional impulsive partial differential equations
    Logaarasi, K.
    Sadhasivam, V
    ITALIAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2020, (44): : 669 - 681
  • [6] Oscillation of solutions of impulsive delay differential equations
    Yan, JR
    Kou, CH
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2001, 254 (02) : 358 - 370
  • [7] Existence and Ulam Stability of Solutions for Conformable Impulsive Differential Equations
    Qiu, Wanzheng
    Wang, JinRong
    O'Regan, Donal
    BULLETIN OF THE IRANIAN MATHEMATICAL SOCIETY, 2020, 46 (06) : 1613 - 1637
  • [8] Existence and Ulam Stability of Solutions for Conformable Impulsive Differential Equations
    Wanzheng Qiu
    JinRong Wang
    Donal O’Regan
    Bulletin of the Iranian Mathematical Society, 2020, 46 : 1613 - 1637
  • [9] Oscillation criteria for impulsive partial fractional differential equations
    Raheem, A.
    Maqbul, Md.
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2017, 73 (08) : 1781 - 1788
  • [10] Oscillation of the systems of impulsive hyperbolic partial differential equations
    Ning, Xiaoqi
    You, Shujun
    Journal of Chemical and Pharmaceutical Research, 2014, 6 (07) : 1370 - 1377