On a new construction of special Lagrangian immersions in complex Euclidean space

被引:9
作者
Castro, I [1 ]
Urbano, F
机构
[1] Univ Jaen, Escuela Politecn Super, Dept Matemat, Jaen 23071, Spain
[2] Univ Granada, Dept Geometria & Topol, E-18071 Granada, Spain
关键词
D O I
10.1093/qmath/hag027
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We construct new special Lagrangian submanifolds in complex Euclidean space using a pair of minimal Legendrian submanifolds in odd-dimensional spheres and certain Lagrangian surface belonging to a family that can be considered as a generalization of the special Lagrangian surfaces in complex Euclidean plane. Our examples include those invariant under the standard action of SO(p+1)xSO(q+1) on C-n = Cp+1 xC(q+1), n=p+q+2.
引用
收藏
页码:253 / 265
页数:13
相关论文
共 8 条
[1]   On a minimal Lagrangian submanifold of Cn foliated by spheres [J].
Castro, I ;
Urbano, F .
MICHIGAN MATHEMATICAL JOURNAL, 1999, 46 (01) :71-82
[2]   CALIBRATED GEOMETRIES [J].
HARVEY, R ;
LAWSON, HB .
ACTA MATHEMATICA, 1982, 148 :47-157
[3]  
HASKINS M, IN PRESS AM J MATH
[4]  
HOFFMAN DA, 1980, MEMOIR AM MATH SOC, V236
[5]   Special Lagrangian m-folds in Cm with symmetries [J].
Joyce, D .
DUKE MATHEMATICAL JOURNAL, 2002, 115 (01) :1-51
[6]  
JOYCE DD, 2001, MATHDG0111326
[7]  
JOYCE DD, 2001, MATHDG0111324
[8]  
Naitoh H., 1981, Tokyo J. Math, V4, P279, DOI [10.3836/tjm/1270215155, DOI 10.3836/TJM/1270215155]