On nonlocal fractal laminar steady and unsteady flows

被引:40
作者
El-Nabulsi, Rami Ahmad [1 ,2 ,3 ]
机构
[1] Athens Inst Educ & Res, Div Math, 8 Valaoritou St, Athens 10671, Greece
[2] Athens Inst Educ & Res, Div Phys, 8 Valaoritou St, Athens 10671, Greece
[3] Shenzhen Technol Univ, Biomed Device Innovat Ctr, 3002 Lantian Rd, Shenzhen 518118, Peoples R China
关键词
37N10; 35Q30; NAVIER-STOKES EQUATIONS; OSCILLATORY BEHAVIOR; FLUID; DYNAMICS; JERK; MECHANICS; SYSTEMS; MOTION;
D O I
10.1007/s00707-020-02929-8
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
In this study, we join the concept of fractality introduced by Li and Ostoja-Starzewski with the concept of nonlocality to produce a new set of nonlocal fractal fluid equations of motion. Both the unsteady and steady laminar flows are discussed. It is revealed that a damped wave equation emerges from the nonlocal fractal Navier-Stokes equation, a result which could lead to a better understanding of fluids turbulence.
引用
收藏
页码:1413 / 1424
页数:12
相关论文
共 74 条
[1]  
Abdallah, 2004, TRANSPORT TRANSITION
[2]   PARTICLE TRAJECTORIES IN CLASSICAL FLUIDS ARE NOT ANOMALOUSLY FRACTAL [J].
ADAMS, DJ .
MOLECULAR PHYSICS, 1986, 59 (06) :1277-1281
[3]  
Agarwal R.K., 2002, Appl. Mech. Rev, V55, P219, DOI DOI 10.1115/1.1459080
[4]  
BALANKIN A, 2012, PHYS REV E, V85
[5]   Steady laminar flow of fractal fluids [J].
Balankin, Alexander S. ;
Mena, Baltasar ;
Susarrey, Orlando ;
Samayoa, Didier .
PHYSICS LETTERS A, 2017, 381 (06) :623-628
[6]   Some New Oscillation Results for Fourth-Order Neutral Differential Equations with Delay Argument [J].
Bazighifan, Omar ;
Moaaz, Osama ;
El-Nabulsi, Rami Ahmad ;
Muhib, Ali .
SYMMETRY-BASEL, 2020, 12 (08)
[7]  
Boonen R, 2010, PROCEEDINGS OF ISMA2010 - INTERNATIONAL CONFERENCE ON NOISE AND VIBRATION ENGINEERING INCLUDING USD2010, P47
[8]   A physically based connection between fractional calculus and fractal geometry [J].
Butera, Salvatore ;
Di Paola, Mario .
ANNALS OF PHYSICS, 2014, 350 :146-158
[9]   THE DAMPED WAVE-EQUATION IN A MOVING DOMAIN [J].
CANNARSA, P ;
DAPRATO, G ;
ZOLESIO, JP .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1990, 85 (01) :1-16
[10]  
Carpinteri A., 1997, Fractals and Fractional Calculus in Continuum Mechanics