Blowup of solutions for the initial boundary value problem of the 3-dimensional compressible damped Euler equations

被引:4
作者
Cheung, Ka Luen [1 ]
机构
[1] Educ Univ Hong Kong, Dept Math & Informat Technol, 10 Lo Ping Rd, Tai Po, Hong Kong, Peoples R China
关键词
blowup; damped Euler equations; SINGULARITIES;
D O I
10.1002/mma.4928
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The blowup phenomenon of solutions is investigated for the initial boundary value problem of the 3-dimensional compressible damped Euler equations. It is shown that if the initial functional associated with a general test function is large enough, the solutions of the damped Euler equations will blow up on finite time. Hence, a class of blowup conditions is established. Moreover, the blowup time could be estimated.
引用
收藏
页码:4754 / 4762
页数:9
相关论文
共 11 条
[1]  
Chae D, 2009, COMMUN MATH SCI, V7, P627
[2]   Energy stability of droplets and dry spots in a thin film model of hanging drops [J].
Cheung, Ka-Luen ;
Chou, Kai-Seng .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2017, 68 (05)
[3]   Formation of singularities in the Euler and Euler-Poisson equations [J].
Engelberg, S .
PHYSICA D, 1996, 98 (01) :67-74
[4]  
Lei Z, 2013, MATH RES LETT, V20, P55
[5]  
Lions P.-L., 1996, Mathematical Topics in Fluid Mechanics: Volume 2: Compressible Models, V2
[6]  
Lions PL., 1998, Mathematical Topics in Fluid Mechanics: Volume 2: Compressible Models
[7]   FORMATION OF SINGULARITIES IN 3-DIMENSIONAL COMPRESSIBLE FLUIDS [J].
SIDERIS, TC .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1985, 101 (04) :475-485
[9]  
Sideris TC, 2003, COMM PARTIAL DIFFER, V28
[10]   Irrotational Blowup of the Solution to Compressible Euler Equation [J].
Suzuki, Takashi .
JOURNAL OF MATHEMATICAL FLUID MECHANICS, 2013, 15 (03) :617-633