Asymptotic solutions of Hamilton-Jacobi equations in Euclidean n space

被引:32
作者
Fujita, Yasuhiro [1 ]
Ishii, Hitoshi
Loreti, Paola
机构
[1] Toyama Univ, Dept Math, Toyama 9308555, Japan
[2] Waseda Univ, Sch Educ, Dept Math, Tokyo 1698050, Japan
[3] Univ Roma La Sapienza, Dipartimento Metodi & Modelli Matemat Sci Applica, I-00161 Rome, Italy
关键词
Hamilton-Jacobi equations; asymptotic solutions; asymptotic behavior;
D O I
10.1512/iumj.2006.55.2813
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the asymptotic behavior of the viscosity solution of the Cauchy problem for the Hamilton-Jacobi equation ut + alpha x (.) Du + H(Du) = f(x) in R-n X (0, infinity), where alpha is a positive constant and H is a convex function on Rn, and establish a convergence result for the viscosity solution u(x, t) as t -> infinity.
引用
收藏
页码:1671 / 1700
页数:30
相关论文
共 15 条
[1]  
ALVAREZ O, 1997, DIFFERENTIAL INTEGRA, V10, P419
[2]  
Bardi M., 1997, OPTIMAL CONTROL VISC
[3]   On the large time behavior of solutions of Hamilton-Jacobi equations [J].
Barles, G ;
Souganidis, PE .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2000, 31 (04) :925-939
[4]  
Barles G., 1994, MATH APPL BERLIN, V17
[5]  
Brezis H., 1973, N HOLLAND MATH STUDI, V5
[6]   USERS GUIDE TO VISCOSITY SOLUTIONS OF 2ND-ORDER PARTIAL-DIFFERENTIAL EQUATIONS [J].
CRANDALL, MG ;
ISHII, H ;
LIONS, PL .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1992, 27 (01) :1-67
[7]  
DAVINI A, 2005, GEN DYNAMICAL APPROA
[8]   A weak KAM theorem and Mather's theory of Lagrangian systems [J].
Fathi, A .
COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1997, 324 (09) :1043-1046
[9]   On convergence of the Lax-Oleinik semi-group [J].
Fathi, A .
COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1998, 327 (03) :267-270
[10]  
FUJITA Y, 2005, ASYMPTOTIC SOLUTIONS