Statistical analysis of motion contrast in optical coherence tomography angiography

被引:49
作者
Cheng, Yuxuan [1 ,2 ]
Guo, Li [1 ,2 ]
Pan, Cong [1 ,2 ]
Lu, Tongtong [1 ,2 ]
Hong, Tianyu [3 ]
Ding, Zhihua [1 ,2 ]
Li, Peng [1 ,2 ]
机构
[1] Zhejiang Univ, Coll Opt Sci & Engn, State Key Lab Modern Opt Instrumentat, Hangzhou 310027, Zhejiang, Peoples R China
[2] Collaborat Innovat Ctr Brain Sci, Hangzhou 310027, Zhejiang, Peoples R China
[3] Zhejiang Univ, Coll Biomed Engn & Instrument Sci, Hangzhou 310027, Zhejiang, Peoples R China
基金
中国国家自然科学基金;
关键词
medical and biological imaging; optical coherence tomography; statistical optics; VISUALIZATION; MICROVASCULATURE; INTENSITY; RETINA;
D O I
10.1117/1.JBO.20.11.116004
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Optical coherence tomography angiography (Angio-OCT), mainly based on the temporal dynamics of OCT scattering signals, has found a range of potential applications in clinical and scientific research. Based on the model of random phasor sums, temporal statistics of the complex-valued OCT signals are mathematically described. Statistical distributions of the amplitude differential and complex differential Angio-OCT signals are derived. The theories are validated through the flow phantom and live animal experiments. Using the model developed, the origin of the motion contrast in Angio-OCT is mathematically explained, and the implications in the improvement of motion contrast are further discussed, including threshold determination and its residual classification error, averaging method, and scanning protocol. The proposed mathematical model of Angio-OCT signals can aid in the optimal design of the system and associated algorithms. (C) The Authors. Published by SPIE under a Creative Commons Attribution 3.0 Unported License.
引用
收藏
页数:10
相关论文
共 32 条
[1]   Using ultrahigh sensitive optical microangiography to achieve comprehensive depth resolved microvasculature mapping for human retina [J].
An, Lin ;
Shen, Tueng T. ;
Wang, Ruikang K. .
JOURNAL OF BIOMEDICAL OPTICS, 2011, 16 (10)
[2]   Flow measurement without phase information in optical coherence tomography images [J].
Barton, JK ;
Stromski, S .
OPTICS EXPRESS, 2005, 13 (14) :5234-5239
[3]   Histogram flow mapping with optical coherence tomography for in vivo skin angiography of hereditary hemorrhagic telangiectasia [J].
Cheng, Kyle H. Y. ;
Mariampillai, Adrian ;
Lee, Kenneth K. C. ;
Vuong, Barry ;
Luk, Timothy W. H. ;
Ramjist, Joel ;
Curtis, Anne ;
Jakubovic, Henry ;
Kertes, Peter ;
Letarte, Michelle ;
Faughnan, Marie E. ;
Yang, Victor X. D. .
JOURNAL OF BIOMEDICAL OPTICS, 2014, 19 (08)
[4]   Improved microcirculation imaging of human skin in vivo using optical microangiography with a correlation mapping mask [J].
Choi, Woo June ;
Reif, Roberto ;
Yousefi, Siavash ;
Wang, Ruikang K. .
JOURNAL OF BIOMEDICAL OPTICS, 2014, 19 (03)
[5]  
Drexler W, 2008, BIOL MED PHYS BIOMED, P1, DOI 10.1007/978-3-540-77550-8
[6]   In vivo imaging of the microcirculation of the volar forearm using correlation mapping optical coherence tomography (cmOCT) [J].
Enfield, Joey ;
Jonathan, Enock ;
Leahy, Martin .
BIOMEDICAL OPTICS EXPRESS, 2011, 2 (05) :1184-1193
[7]   Mobility and transverse flow visualization using phase variance contrast with spectral domain optical coherence tomography [J].
Fingler, Jeff ;
Schwartz, Dan ;
Yang, Changhuei ;
Fraser, Scott E. .
OPTICS EXPRESS, 2007, 15 (20) :12636-12653
[8]   Volumetric microvascular imaging of human retina using optical coherence tomography with a novel motion contrast technique [J].
Fingler, Jeff ;
Zawadzki, Robert J. ;
Werner, John S. ;
Schwartz, Dan ;
Fraser, Scott E. .
OPTICS EXPRESS, 2009, 17 (24) :22190-22200
[9]  
Goodman JosephW., 1985, Statistical Optics, P567
[10]   Split-spectrum amplitude-decorrelation angiography with optical coherence tomography [J].
Jia, Yali ;
Tan, Ou ;
Tokayer, Jason ;
Potsaid, Benjamin ;
Wang, Yimin ;
Liu, Jonathan J. ;
Kraus, Martin F. ;
Subhash, Hrebesh ;
Fujimoto, James G. ;
Hornegger, Joachim ;
Huang, David .
OPTICS EXPRESS, 2012, 20 (04) :4710-4725