Infinite-order laminates in a model in crystal plasticity

被引:11
作者
Albin, Nathan [1 ]
Conti, Sergio [2 ]
Dolzmann, Georg [3 ]
机构
[1] CALTECH, Pasadena, CA 91101 USA
[2] Univ Duisburg Essen, Fachbereich Math, D-47057 Duisburg, Germany
[3] Univ Regensburg, NWF Math 1, D-93040 Regensburg, Germany
基金
美国国家科学基金会;
关键词
OPTIMAL-DESIGN; ENERGY MINIMIZATION; RELAXATION; MICROSTRUCTURES; REGULARITY; CONJECTURE; INTEGRANDS; ENVELOPE;
D O I
10.1017/S0308210508000127
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider a geometrically nonlinear model for crystal plasticity in two dimensions, with two active slip systems and rigid elasticity. We prove that the rank-1 convex envelope of the condensed energy density is obtained by infinite-order laminates, and express it explicitly via the F-2(1) hypergeometric function. We also determine the polyconvex envelope, leading to upper and lower bounds to the quasiconvex envelope. The two bounds differ by less than 2%.
引用
收藏
页码:685 / 708
页数:24
相关论文
共 34 条
  • [1] Does preoperative hydration affect postoperative nausea and vomiting? A randomized, controlled trial
    Adanir, Tayfun
    Aksun, Murat
    Ozgurbuz, Ugur
    Altin, Fahri
    Sencan, Atilla
    [J]. JOURNAL OF LAPAROENDOSCOPIC & ADVANCED SURGICAL TECHNIQUES, 2008, 18 (01): : 1 - 4
  • [2] [Anonymous], 1964, HDB MATH FUNCTIONS F
  • [3] [Anonymous], 1989, Direct Methods in the Calculus of Variations, Applied Mathematical Sciences, DOI DOI 10.1007/978-3-642-51440-1
  • [4] PROPOSED EXPERIMENTAL TESTS OF A THEORY OF FINE MICROSTRUCTURE AND THE 2-WELL PROBLEM
    BALL, JM
    JAMES, RD
    [J]. PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1992, 338 (1650): : 389 - 450
  • [5] BALL JM, 1984, J FUNCT ANAL, V58, P225, DOI 10.1016/0022-1236(84)90041-7
  • [6] Regularity of quasiconvex envelopes
    Ball, JM
    Kirchheim, B
    Kristensen, J
    [J]. CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2000, 11 (04) : 333 - 359
  • [7] Effective relaxation for microstructure simulation: algorithms and applications
    Bartels, S
    Carstensen, C
    Hackl, K
    Hoppe, U
    [J]. COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2004, 193 (48-51) : 5143 - 5175
  • [8] Non-convex potentials and microstructures in finite-strain plasticity
    Carstensen, C
    Hackl, K
    Mielke, A
    [J]. PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2002, 458 (2018): : 299 - 317
  • [9] Mixed analytical-numerical relaxation in finite single-slip crystal plasticity
    Carstensen, Carsten
    Conti, Sergio
    Orlando, Antonio
    [J]. CONTINUUM MECHANICS AND THERMODYNAMICS, 2008, 20 (05) : 275 - 301
  • [10] Single-slip elastoplastic microstructures
    Conti, S
    Theil, F
    [J]. ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2005, 178 (01) : 125 - 148