Analytical stability bound for a class of delayed fractional-order dynamic systems

被引:0
作者
Chen, YQ [1 ]
Moore, KL [1 ]
机构
[1] Utah State Univ, Coll Engn, Dept Elect & Comp Engn, CSOIS, Logan, UT 84322 USA
来源
PROCEEDINGS OF THE 40TH IEEE CONFERENCE ON DECISION AND CONTROL, VOLS 1-5 | 2001年
关键词
delay; fractional-order dynamic systems; fractional-order integrator; fractional-order differentiator; stability bound; analytical solutions; Lambert function;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
A class of delayed linear time-invariant (LTI) fractional-order dynamic systems is considered. The analytical stability bound is obtained by using the Lambert function. Two examples are presented to illustrate the analytical results.
引用
收藏
页码:1421 / 1426
页数:6
相关论文
共 30 条
[1]  
[Anonymous], 1949, P ROYAL SOC EDINBURG
[2]  
[Anonymous], 1921, OPERA MATH
[3]  
[Anonymous], UEF0494 AC SCI I EXP
[4]  
ASL FM, 2000, P AM CONTR C CHIC IL, V6, P2496
[5]  
AXTELL M, 1990, PROC NAECON IEEE NAT, P563, DOI 10.1109/NAECON.1990.112826
[6]  
CHEN YQ, 2000, AUTOMATICA OCT, P1
[7]  
Corless R., 1993, MAPLE TECHNICAL NEWS, V9, P12
[8]   On the Lambert W function [J].
Corless, RM ;
Gonnet, GH ;
Hare, DEG ;
Jeffrey, DJ ;
Knuth, DE .
ADVANCES IN COMPUTATIONAL MATHEMATICS, 1996, 5 (04) :329-359
[9]  
Corless Robert M., 1997, ISSAC 97 P 1997 INT, P197, DOI DOI 10.1145/258726.258783
[10]  
DORCAK L, 1999, SACTA J, V2, P75