The long-term trend of PM2.5-related mortality in China: The effects of source data selection

被引:33
作者
Xiao, Qingyang [1 ]
Liang, Fengchao [2 ]
Ning, Miao [3 ]
Zhang, Qiang [4 ]
Bi, Jianzhao [5 ]
He, Kebin [1 ]
Lei, Yu [3 ]
Liu, Yang [1 ,5 ]
机构
[1] Tsinghua Univ, Sch Environm, State Key Joint Lab Environm Simulat & Pollut Con, Beijing 100084, Peoples R China
[2] Chinese Acad Med Sci & Peking Union Med Coll, Natl Ctr Cardiovasc Dis, Fuwai Hosp, Dept Epidemiol,State Key Lab Cardiovasc Dis, Beijing 100037, Peoples R China
[3] Chinese Acad Environm Planning, Atmospher Environm Inst, 10 Dayangfang,Beiyuan Rd, Beijing 100012, Peoples R China
[4] Tsinghua Univ, Dept Earth Syst Sci, Key Lab Earth Syst Modeling, Minist Educ, Beijing 100084, Peoples R China
[5] Emory Univ, Rollins Sch Publ Hlth, 1518 Clifton Rd NE, Atlanta, GA 30032 USA
基金
中国国家自然科学基金;
关键词
Satellite retrievals; Machine learning; PM2.5; Mortality assessment; FINE PARTICULATE MATTER; SPATIOTEMPORAL TRENDS; AIR-POLLUTION; GLOBAL BURDEN; PM2.5; EXPOSURE; RISK;
D O I
10.1016/j.chemosphere.2020.127894
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Quantification of PM2.5 exposure and associated mortality is critical to inform policy making. Previous studies estimated varying PM2.5-related mortality in China due to the usage of different source data, but rarely justify the data selection. To quantify the sensitivity of mortality assessment to source data, we first constructed state-of-the-art PM2.5 predictions during 2000-2018 at a 1-km resolution with an ensemble machine learning model that filled missing data explicitly. We also calibrated and fused various gridded population data with a geostatistical method. Then we assessed the PM2.5-related mortality with various PM2.5 predictions, population distributions, exposure-response functions, and baseline mortalities. We found that in addition to the well documented uncertainties in the exposure-response functions, missingness in PM2.5 prediction, PM2.5 prediction error, and prediction error in population distribution resulted to a 40.5%, 25.2% and 15.9% lower mortality assessment compared to the mortality assessed with the best-performed source data, respectively. With the best-performed source data, we estimated a total of approximately 25 million PM2.5-related mortality during 2001-2017 in China. From 2001 to 2017, The PM2.5 variations, growth and aging of population, decrease in baseline mortality led to a 7.8% increase, a 42.0% increase and a 24.6% decrease in PM2.5-related mortality, separately. We showed that with the strict clean air policies implemented in 2013, the population-weighted PM2.5 concentration decreased remarkably at an annual rate of 4.5 mu g/m(3), leading to a decrease of 179 thousand PM2.5-related deaths nationwide during 2013-2017. The mortality decrease due to PM2.5 reduction was offset by the population growth and aging population. (C) 2020 Elsevier Ltd. All rights reserved.
引用
收藏
页数:8
相关论文
共 53 条
[1]   Addressing Global Mortality from Ambient PM2.5 [J].
Apte, Joshua S. ;
Marshall, Julian D. ;
Cohen, Aaron J. ;
Brauer, Michael .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2015, 49 (13) :8057-8066
[2]   Accuracy Assessment of Multi-Source Gridded Population Distribution Datasets in China [J].
Bai, Zhongqiang ;
Wang, Juanle ;
Wang, Mingming ;
Gao, Mengxu ;
Sun, Jiulin .
SUSTAINABILITY, 2018, 10 (05)
[3]   Predicting Daily Urban Fine Particulate Matter Concentrations Using a Random Forest Model [J].
Brokamp, Cole ;
Jandarov, Roman ;
Hossain, Monir ;
Ryan, Patrick .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2018, 52 (07) :4173-4179
[4]  
Buchard V, 2017, J CLIMATE, V30, P6851, DOI [10.1175/jcli-d-16-0613.1, 10.1175/JCLI-D-16-0613.1]
[5]   Evaluation of the surface PM2.5 in Version 1 of the NASA MERRA Aerosol Reanalysis over the United States [J].
Buchard, V. ;
da Silva, A. M. ;
Randles, C. A. ;
Colarco, P. ;
Ferrare, R. ;
Hair, J. ;
Hostetler, C. ;
Tackett, J. ;
Winker, D. .
ATMOSPHERIC ENVIRONMENT, 2016, 125 :100-111
[6]   Global estimates of mortality associated with long-term exposure to outdoor fine particulate matter [J].
Burnett, Richard ;
Chen, Hong ;
Szyszkowicz, Mieczyslaw ;
Fann, Neal ;
Hubbell, Bryan ;
Pope, C. Arden ;
Apte, Joshua S. ;
Brauer, Michael ;
Cohen, Aaron ;
Weichenthal, Scott ;
Coggins, Jay ;
Di, Qian ;
Brunekreef, Bert ;
Frostad, Joseph ;
Lim, Stephen S. ;
Kan, Haidong ;
Walker, Katherine D. ;
Thurston, George D. ;
Hayes, Richard B. ;
Lim, Chris C. ;
Turner, Michelle C. ;
Jerrett, Michael ;
Krewski, Daniel ;
Gapstur, Susan M. ;
Diver, W. Ryan ;
Ostro, Bart ;
Goldberg, Debbie ;
Crouse, Daniel L. ;
Martin, Randall V. ;
Peters, Paul ;
Pinault, Lauren ;
Tjepkema, Michael ;
van Donkelaar, Aaron ;
Villeneuve, Paul J. ;
Miller, Anthony B. ;
Yin, Peng ;
Zhou, Maigeng ;
Wang, Lijun ;
Janssen, Nicole A. H. ;
Marra, Marten ;
Atkinson, Richard W. ;
Tsang, Hilda ;
Thuan Quoc Thach ;
Cannon, John B. ;
Allen, Ryan T. ;
Hart, Jaime E. ;
Laden, Francine ;
Cesaroni, Giulia ;
Forastiere, Francesco ;
Weinmayr, Gudrun .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2018, 115 (38) :9592-9597
[7]   An Integrated Risk Function for Estimating the Global Burden of Disease Attributable to Ambient Fine Particulate Matter Exposure [J].
Burnett, Richard T. ;
Pope, C. Arden, III ;
Ezzati, Majid ;
Olives, Casey ;
Lim, Stephen S. ;
Mehta, Sumi ;
Shin, Hwashin H. ;
Singh, Gitanjali ;
Hubbell, Bryan ;
Brauer, Michael ;
Anderson, H. Ross ;
Smith, Kirk R. ;
Balmes, John R. ;
Bruce, Nigel G. ;
Kan, Haidong ;
Laden, Francine ;
Pruess-Ustuen, Annette ;
Turner, Michelle C. ;
Gapstur, Susan M. ;
Diver, W. Ryan ;
Cohen, Aaron .
ENVIRONMENTAL HEALTH PERSPECTIVES, 2014, 122 (04) :397-403
[8]  
Cohen AJ, 2017, LANCET, V389, P1907, DOI [10.1016/S0140-6736(17)30505-6, 10.1016/s0140-6736(17)30505-6]
[9]  
Dobson JE, 2000, PHOTOGRAMM ENG REM S, V66, P849
[10]  
Doxsey-Whitfield E., 2015, PAP APPL GEOGR, V1, P226, DOI DOI 10.1080/23754931.2015.1014272