Uniform supertrees with extremal spectral radii

被引:5
作者
Wang, Wen-Huan [1 ]
Yuan, Ling [1 ]
机构
[1] Shanghai Univ, Dept Math, Shanghai 200444, Peoples R China
基金
中国国家自然科学基金;
关键词
Hypergraph; spectral radius; supertree; matching polynomial; HYPERGRAPHS; EIGENVALUES; BOUNDS; 1ST;
D O I
10.1007/s11464-020-0873-6
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A supertree is a connected and acyclic hypergraph. We investigate the supertrees with the extremal spectral radii among several kinds of r-uniform supertrees. First, by using the matching polynomials of supertrees, a new and useful grafting operation is proposed for comparing the spectral radii of supertrees, and its applications are shown to obtain the supertrees with the extremal spectral radii among some kinds of r-uniform supertrees. Second, the supertree with the third smallest spectral radius among the r-uniform supertrees is deduced. Third, among the r-uniform supertrees with a given maximum degree, the supertree with the smallest spectral radius is derived. At last, among the r-uniform starlike supertrees, the supertrees with the smallest and the largest spectral radii are characterized.
引用
收藏
页码:1211 / 1229
页数:19
相关论文
共 50 条
[21]   Extremal normalized Laplacian spectral radii of graphs [J].
Sun, Shaowei ;
Chen, Mengsi .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2023, 679 :261-274
[22]   The second largest spectral radii of uniform hypertrees with given size of matching [J].
Su, Li ;
Kang, Liying ;
Li, Honghai ;
Shan, Erfang .
LINEAR & MULTILINEAR ALGEBRA, 2021, 69 (14) :2674-2701
[23]   THE SPECTRAL RADII ON UNIFORM TRICYCLIC HYPERGRAPHS [J].
Zheng, Liyi ;
Zhao, Yaoping ;
Zou, Xin ;
Zhu, Zhongxun .
OPERATORS AND MATRICES, 2024, 18 (03) :623-640
[24]   The Spectral Radii of Intersecting Uniform Hypergraphs [J].
Peng-Li Zhang ;
Xiao-Dong Zhang .
Communications on Applied Mathematics and Computation, 2021, 3 :243-256
[25]   Spectral radius of r-uniform supertrees with perfect matchings [J].
Lei Zhang ;
An Chang .
Frontiers of Mathematics in China, 2018, 13 :1489-1499
[26]   The extremal spectral radii of k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k$$\end{document}-uniform supertrees [J].
Honghai Li ;
Jia-Yu Shao ;
Liqun Qi .
Journal of Combinatorial Optimization, 2016, 32 (3) :741-764
[27]   Largest signless Laplacian spectral radius of uniform supertrees with diameter and pendent edges (vertices) [J].
Duan, Cunxiang ;
Wang, Ligong ;
Xiao, Peng .
FRONTIERS OF MATHEMATICS IN CHINA, 2020, 15 (06) :1105-1120
[28]   Computing the p-Spectral Radii of Uniform Hypergraphs with Applications [J].
Jingya Chang ;
Weiyang Ding ;
Liqun Qi ;
Hong Yan .
Journal of Scientific Computing, 2018, 75 :1-25
[29]   Computing the p-Spectral Radii of Uniform Hypergraphs with Applications [J].
Chang, Jingya ;
Ding, Weiyang ;
Qi, Liqun ;
Yan, Hong .
JOURNAL OF SCIENTIFIC COMPUTING, 2018, 75 (01) :1-25
[30]   On extremal spectral radius of blow-up uniform hypergraphs [J].
Xu, Shao-Han ;
Hu, Fu-Tao ;
Wang, Yi .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2023, 667 :71-87