Thermodynamic analysis of the pathway for ethanol production from cellobiose in Clostridium thermocellum

被引:35
|
作者
Dash, Satyakam [1 ,5 ]
Olson, Daniel G. [2 ,5 ]
Chan, Siu Hung Joshua [3 ,5 ]
Amador-Noguez, Daniel [4 ,5 ]
Lynd, Lee R. [2 ,5 ]
Maranas, Costas D. [1 ,5 ]
机构
[1] Penn State Univ, Dept Chem Engn, University Pk, PA 16802 USA
[2] Dartmouth Coll, Thayer Sch Engn, Hanover, NH 03755 USA
[3] Colorado State Univ, Dept Chem & Biol Engn, Ft Collins, CO 80523 USA
[4] Univ Wisconsin, Dept Bacteriol, Madison, WI 53706 USA
[5] Oak Ridge Natl Lab, Ctr Bioenergy Innovat, Oak Ridge, TN 37830 USA
关键词
Thermodynamic analysis; Clostridium thermocellum; Ethanol inhibition; Elementary flux modes; Genetic interventions; GLYCOLYSIS; METABOLISM; ALCOHOL; MODES;
D O I
10.1016/j.ymben.2019.06.006
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Clostridium thermocellum is a candidate for consolidated bioprocessing by carrying out both cellulose solubilization and fermentation. However, despite significant efforts the maximum ethanol titer achieved to date remains below industrially required targets. Several studies have analyzed the impact of increasing ethanol concentration on C. thermocellum's membrane properties, cofactor pool ratios, and altered enzyme regulation. In this study, we explore the extent to which thermodynamic equilibrium limits maximum ethanol titer. We used the max-min driving force (MDF) algorithm (Noor et al., 2014) to identify the range of allowable metabolite concentrations that maintain a negative free energy change for all reaction steps in the pathway from cellobiose to ethanol. To this end, we used a time-series metabolite concentration dataset to flag five reactions (phosphofructokinase (PFK), fructose bisphosphate aldolase (FBA), glyceraldehyde-3-phosphate dehydrogenase (GAPDH), aldehyde dehydrogenase (ALDH) and alcohol dehydrogenase (ADH)) which become thermodynamic bottlenecks under high external ethanol concentrations. Thermodynamic analysis was also deployed in a prospective mode to evaluate genetic interventions which can improve pathway thermodynamics by generating minimal set of reactions or elementary flux modes (EFMs) which possess unique genetic variations while ensuring mass and redox balance with ethanol production. MDF evaluation of all generated (336) EFMs indicated that, i) pyruvate phosphate dikinase (PPDK) has a higher pathway MDF than the malate shunt alternative due to limiting CO2 concentrations under physiological conditions, and ii) NADPH-dependent glyceraldehyde-3-phosphate dehydrogenase (GAPN) can alleviate thermodynamic bottlenecks at high ethanol concentrations due to cofactor modification and reduction in ATP generation. The combination of ATP linked phosphofructokinase (PFK-ATP) and NADPH linked alcohol dehydrogenase (ADH-NADPH) with NADPH linked aldehyde dehydrogenase (ALDH-NADPH) or ferredoxin: NADP + oxidoreductase (NADPH-FNOR) emerges as the best intervention strategy for ethanol production that balances MDF improvements with ATP generation, and appears to functionally reproduce the pathway employed by the ethanologen Thermoanaerobacterium saccharolyticum. Expanding the list of measured intracellular metabolites and improving the quantification accuracy of measurements was found to improve the fidelity of pathway thermodynamics analysis in C. thermocellum. This study demonstrates even before addressing an organism's enzyme kinetics and allosteric regulations, pathway thermodynamics can flag pathway bottlenecks and identify testable strategies for enhancing pathway thermodynamic feasibility and function.
引用
收藏
页码:161 / 169
页数:9
相关论文
共 50 条
  • [1] The ethanol pathway from Thermoanaerobacterium saccharolyticum improves ethanol production in Clostridium thermocellum
    Hon, Shuen
    Olson, Daniel G.
    Holwerda, Evert K.
    Lanahan, Anthony A.
    Murphy, Sean J. L.
    Maloney, Marybeth I.
    Zheng, Tianyong
    Papanek, Beth
    Guss, Adam M.
    Lynd, Lee R.
    METABOLIC ENGINEERING, 2017, 42 : 175 - 184
  • [2] SPECIFICITY OF CELLOBIOSE PHOSPHORYLASE FROM CLOSTRIDIUM THERMOCELLUM
    ALEXANDE.JK
    FEDERATION PROCEEDINGS, 1967, 26 (02) : 726 - &
  • [4] PURIFICATION AND PROPERTIES OF CELLOBIOSE PHOSPHORYLASE FROM CLOSTRIDIUM-THERMOCELLUM
    TANAKA, K
    KAWAGUCHI, T
    IMADA, Y
    OOI, T
    ARAI, M
    JOURNAL OF FERMENTATION AND BIOENGINEERING, 1995, 79 (03): : 212 - 216
  • [5] Structure of cellobiose phosphorylase from Clostridium thermocellum in complex with phosphate
    Bianchetti, Christopher M.
    Elsen, Nathaniel L.
    Fox, Brian G.
    Phillips, George N., Jr.
    ACTA CRYSTALLOGRAPHICA SECTION F-STRUCTURAL BIOLOGY COMMUNICATIONS, 2011, 67 : 1345 - 1349
  • [6] The role of AdhE on ethanol tolerance and production in Clostridium thermocellum
    Pech-Canul, Angel
    Hammer, Sarah K.
    Ziegler, Samantha J.
    Richardson, Isaiah D.
    Sharma, Bishal D.
    Maloney, Marybeth I.
    Bomble, Yannick J.
    Lynd, Lee R.
    Olson, Daniel G.
    JOURNAL OF BIOLOGICAL CHEMISTRY, 2024, 300 (08)
  • [7] Improved ethanol tolerance and production in strains of Clostridium thermocellum
    Rani, KS
    Swamy, MV
    Sunitha, D
    Haritha, D
    Seenayya, G
    WORLD JOURNAL OF MICROBIOLOGY & BIOTECHNOLOGY, 1996, 12 (01): : 57 - 60
  • [8] High ethanol production by new isolates of Clostridium thermocellum
    Rani, KS
    Swamy, MV
    Seenayya, G
    BIOTECHNOLOGY LETTERS, 1996, 18 (08) : 957 - 962
  • [9] PRODUCTION OF ETHANOL-RESISTANT MUTANTS OF CLOSTRIDIUM-THERMOCELLUM
    CHUVILSKAYA, NA
    ATAKISHIEVA, YY
    AKIMENKO, VK
    MICROBIOLOGY, 1991, 60 (01) : 78 - 84
  • [10] SYNTHESIS OF [C-14] CELLOBIOSE WITH CLOSTRIDIUM-THERMOCELLUM CELLOBIOSE PHOSPHORYLASE
    NG, TK
    ZEIKUS, JG
    APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 1986, 52 (04) : 902 - 904