Some remarks on L1 embeddings in the subelliptic setting

被引:2
作者
Krantz, Steven G. [1 ]
Peloso, Marco M. [2 ]
Spector, Daniel [3 ,4 ]
机构
[1] Washington Univ, Dept Math, St Louis, MO 63130 USA
[2] Univ Milan, Dipartimento Matemat F Enriques, Via C Saldini 50, I-20133 Milan, Italy
[3] Okinawa Inst Sci & Technol Grad Univ, Nonlinear Anal Unit, 1919-1 Tancha, Onna Son, Okinawa, Japan
[4] Natl Chiao Tung Univ, Dept Appl Math, Hsinchu, Taiwan
关键词
Sobolev embeddings; Lorentz spaces; L-1; regime; Stratified group; Subelliptic estimates; LIE-GROUPS; SPACES; OPERATORS; COMPLEX;
D O I
10.1016/j.na.2020.112149
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we establish an optimal Lorentz estimate for the Riesz potential in the L1 regime in the setting of a stratified group G: Let Q >= 2 be the homogeneous dimension of G and Ia denote the Riesz potential of order a on G. Then, for every alpha is an element of (0, Q), there exists a constant C = C(alpha, Q) > 0 such that parallel to I(alpha)f parallel to L-Q/(Q-alpha),L-1(G) <= C parallel to XI(1)f parallel to(L1(G)) (0.1) for all f is an element of C-c(infinity) (G) such that XI(1)f is an element of L-1(G), where X denotes the horizontal gradient. (C) 2020 TheAuthor(s). Published by Elsevier Ltd.
引用
收藏
页数:11
相关论文
共 22 条
[1]   Besov and Triebel-Lizorkin spaces on Lie groups [J].
Bruno, Tommaso ;
Peloso, Marco M. ;
Vallarino, Maria .
MATHEMATISCHE ANNALEN, 2020, 377 (1-2) :335-377
[2]   Sobolev spaces on Lie groups: Embedding theorems and algebra properties [J].
Bruno, Tommaso ;
Peloso, Marco M. ;
Tabacco, Anita ;
Vallarino, Maria .
JOURNAL OF FUNCTIONAL ANALYSIS, 2019, 276 (10) :3014-3050
[3]  
Chanillo S, 2009, MATH RES LETT, V16, P487, DOI 10.4310/MRL.2009.v16.n3.a9
[4]   Sobolev algebras on Lie groups and Riemannian manifolds [J].
Coulhon, T ;
Russ, E ;
Tardivel-Nachef, V .
AMERICAN JOURNAL OF MATHEMATICS, 2001, 123 (02) :283-342
[5]   WEAK TYPE (1, 1) ESTIMATES FOR HEAT KERNEL MAXIMAL FUNCTIONS ON LIE-GROUPS [J].
COWLING, M ;
GAUDRY, G ;
GIULINI, S ;
MAUCERI, G .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1991, 323 (02) :637-649
[6]  
FOLLAND GB, 1975, ARK MAT, V13, P161, DOI 10.1007/BF02386204
[7]   ESTIMATES FOR DELTA-BAR B COMPLEX AND ANALYSIS ON HEISENBERG GROUP [J].
FOLLAND, GB ;
STEIN, EM .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1974, 27 (04) :429-522
[8]  
Garofalo N, 1996, COMMUN PUR APPL MATH, V49, P1081, DOI 10.1002/(SICI)1097-0312(199610)49:10<1081::AID-CPA3>3.0.CO
[9]  
2-A
[10]  
Grafakos L, 2014, GRAD TEXTS MATH, V250, DOI 10.1007/978-1-4939-1230-8