A low order anisotropic nonconforming characteristic finite element method for a convection-dominated transport problem

被引:15
作者
Shi, Dong-Yang [1 ]
Wang, Xiao-Ling [1 ]
机构
[1] Zhengzhou Univ, Dept Math, Zhengzhou 450052, Peoples R China
基金
美国国家科学基金会;
关键词
Convection-diffusion problem; Nonconforming finite element; Error estimate; Mean value technique; Anisotropic meshes; DIFFUSION-PROBLEMS; MISCIBLE DISPLACEMENT; MIXED METHODS; POROUS-MEDIA; SUPERCONVERGENCE; MESHES; APPROXIMATION; INTERPOLATION; EQUATIONS;
D O I
10.1016/j.amc.2009.03.034
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A low order anisotropic nonconforming rectangular finite element method for the convection-diffusion problem with a modified characteristic finite element scheme is studied in this paper. The O(h(2)) order error estimate in L-2-norm with respect to the space, one order higher than the expanded characteristic-mixed finite element scheme with order O(h), and the same as the conforming case for a modified characteristic finite element scheme under regular meshes, is obtained by use of some distinct properties of the interpolation operator and the mean value technique, instead of the so-called elliptic projection, which is an indispensable tool in the convergence analysis of the previous literature. Lastly, some numerical results of the element are provided to verify our theoretical analysis. (C) 2009 Elsevier Inc. All rights reserved.
引用
收藏
页码:411 / 418
页数:8
相关论文
共 24 条
[22]  
Shi DY, 2005, J COMPUT MATH, V23, P261
[23]   The streamline-diffusion method for nonconforming Q1rot elements on rectangular tensor-product meshes [J].
Stynes, M ;
Tobiska, L .
IMA JOURNAL OF NUMERICAL ANALYSIS, 2001, 21 (01) :123-142
[24]  
Yang DP, 2000, MATH COMPUT, V69, P929, DOI 10.1090/S0025-5718-99-01172-2