A low order anisotropic nonconforming characteristic finite element method for a convection-dominated transport problem

被引:15
作者
Shi, Dong-Yang [1 ]
Wang, Xiao-Ling [1 ]
机构
[1] Zhengzhou Univ, Dept Math, Zhengzhou 450052, Peoples R China
基金
美国国家科学基金会;
关键词
Convection-diffusion problem; Nonconforming finite element; Error estimate; Mean value technique; Anisotropic meshes; DIFFUSION-PROBLEMS; MISCIBLE DISPLACEMENT; MIXED METHODS; POROUS-MEDIA; SUPERCONVERGENCE; MESHES; APPROXIMATION; INTERPOLATION; EQUATIONS;
D O I
10.1016/j.amc.2009.03.034
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A low order anisotropic nonconforming rectangular finite element method for the convection-diffusion problem with a modified characteristic finite element scheme is studied in this paper. The O(h(2)) order error estimate in L-2-norm with respect to the space, one order higher than the expanded characteristic-mixed finite element scheme with order O(h), and the same as the conforming case for a modified characteristic finite element scheme under regular meshes, is obtained by use of some distinct properties of the interpolation operator and the mean value technique, instead of the so-called elliptic projection, which is an indispensable tool in the convergence analysis of the previous literature. Lastly, some numerical results of the element are provided to verify our theoretical analysis. (C) 2009 Elsevier Inc. All rights reserved.
引用
收藏
页码:411 / 418
页数:8
相关论文
共 24 条
[1]  
Apel T, 2001, NUMER MATH, V89, P193, DOI 10.1007/s002110000256
[2]   ANISOTROPIC INTERPOLATION WITH APPLICATIONS TO THE FINITE-ELEMENT METHOD [J].
APEL, T ;
DOBROWOLSKI, M .
COMPUTING, 1992, 47 (3-4) :277-293
[3]  
APEL T, 1999, ANISOTROPIC FINITE E
[4]   ON THE IMPLEMENTATION OF MIXED METHODS AS NONCONFORMING METHODS FOR 2ND-ORDER ELLIPTIC PROBLEMS [J].
ARBOGAST, T ;
CHEN, ZX .
MATHEMATICS OF COMPUTATION, 1995, 64 (211) :943-972
[5]  
BECKER R, 1995, NOTES NUMERICAL FLUI, V49
[6]   THE FINITE VOLUME ELEMENT METHOD FOR DIFFUSION-EQUATIONS ON GENERAL TRIANGULATIONS [J].
CAI, ZQ ;
MANDEL, J ;
MCCORMICK, S .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1991, 28 (02) :392-402
[7]   Anisotropic interpolation and quasi-Wilson element for narrow quadrilateral meshes [J].
Chen, SC ;
Shi, DY ;
Zhao, YC .
IMA JOURNAL OF NUMERICAL ANALYSIS, 2004, 24 (01) :77-95
[8]  
Ciarlet Philippe G., 2002, Finite Element Method for Elliptic Problems
[9]   SOME IMPROVED ERROR-ESTIMATES FOR THE MODIFIED METHOD OF CHARACTERISTICS [J].
DAWSON, CN ;
RUSSELL, TF ;
WHEELER, MF .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1989, 26 (06) :1487-1512
[10]  
DOUGLAS J, 1985, MATH COMPUT, V44, P39, DOI 10.1090/S0025-5718-1985-0771029-9