Structural Optimization of Triboelectric Nanogenerator for Harvesting Water Wave Energy

被引:198
|
作者
Jiang, Tao [1 ]
Zhang, Li Min [1 ]
Chen, Xiangyu [1 ]
Han, Chang Bao [1 ]
Tang, Wei [1 ]
Zhang, Chi [1 ]
Xu, Liang [1 ]
Wang, Zhong Lin [1 ,2 ]
机构
[1] Chinese Acad Sci, Beijing Inst Nanoenergy & Nanosyst, Beijing 100083, Peoples R China
[2] Georgia Inst Technol, Sch Mat Sci & Engn, Atlanta, GA 30332 USA
基金
中国国家自然科学基金;
关键词
triboelectric nanogenerator; water wave energy; structural optimization; blue energy; ELECTROSTATIC-INDUCTION; CONVERSION EFFICIENCY; MODE; CONTACT; ELECTRODE;
D O I
10.1021/acsnano.5b06372
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Ocean waves are one of the most abundant energy sources on earth, but harvesting such energy is rather challenging due to various limitations of current technologies. Recently, networks formed by triboelectric nanogenerator (TENG) have been proposed as a promising technology for harvesting water wave energy. In this work, a basic unit for the TENG network was studied and optimized, which has a box structure composed of walls made of TENG composed of a wavy-structured Cu-Kapton-Cu film and two FEP thin films, with a metal ball enclosed inside. By combination of the theoretical calculations and experimental studies, the output performances of the TENG unit were investigated for various structural parameters, such as the size, mass, or number of the metal balls. From the viewpoint of theory, the output characteristics of TENG during its collision with the ball were numerically calculated by the finite element method and interpolation method, and there exists an optimum ball size or mass to reach maximized output power and electric energy. Moreover, the theoretical results were well verified by the experimental tests. The present work could provide guidance for structural optimization of wavy-structured TENGs for effectively harvesting water wave energy toward the dream of large-scale blue energy.
引用
收藏
页码:12562 / 12572
页数:11
相关论文
共 50 条
  • [21] A drawstring triboelectric nanogenerator with modular electrodes for harvesting wave energy
    Zhao, Da
    Li, Hengyu
    Wang, Jianlong
    Gao, Qi
    Yu, Yang
    Wen, Jianming
    Wang, Zhong Lin
    Cheng, Tinghai
    NANO RESEARCH, 2023, 16 (08) : 10931 - 10937
  • [22] Triboelectric nanogenerator integrated with a simple controlled switch for regularized water wave energy harvesting
    Yang, Hongbo
    Liang, Xi
    Kan, Junwu
    Wang, Zhong Lin
    Jiang, Tao
    Hong, Zhanyong
    NANO RESEARCH, 2024, 17 (08) : 7585 - 7592
  • [23] A drawstring triboelectric nanogenerator with modular electrodes for harvesting wave energy
    Da Zhao
    Hengyu Li
    Jianlong Wang
    Qi Gao
    Yang Yu
    Jianming Wen
    Zhong Lin Wang
    Tinghai Cheng
    Nano Research, 2023, 16 : 10931 - 10937
  • [24] A columnar multi-layer sliding triboelectric nanogenerator for water wave energy harvesting independent of wave height and direction
    Miao, Xue
    Yang, Hanxiao
    Li, Zekun
    Cheng, Meifei
    Zhao, Yilin
    Wan, Lingyu
    Yu, Aifang
    Zhai, Junyi
    NANO RESEARCH, 2024, 17 (04) : 3029 - 3034
  • [25] VORTEX INTENSIFICATION OF A TRIBOELECTRIC NANOGENERATOR ARRAY FOR WATER ENERGY HARVESTING
    Li, Zhongjie
    Wang, Chenyu
    Gong, Ying
    Zhou, Yuan
    Wang, Biao
    PROCEEDINGS OF ASME 2023 CONFERENCE ON SMART MATERIALS, ADAPTIVE STRUCTURES AND INTELLIGENT SYSTEMS, SMASIS2023, 2023,
  • [26] Self-adaptive and soft-contact ellipsoidal pendulum-structured triboelectric nanogenerator for harvesting water wave energy
    Zhao, Bingqi
    Long, Yong
    Huang, Tianci
    Niu, Jianan
    Liu, Yuxiu
    Sha, Wei
    Wang, Jiangwen
    Wang, Zhong Lin
    Zhai, Junyi
    Hu, Weiguo
    CHEMICAL ENGINEERING JOURNAL, 2024, 489
  • [27] Water tank triboelectric nanogenerator for efficient harvesting of water wave energy over a broad frequency range
    Yang, Xiya
    Chan, Szeyan
    Wang, Lingyun
    Daoud, Walid A.
    NANO ENERGY, 2018, 44 : 388 - 398
  • [28] Whirling-Folded Triboelectric Nanogenerator with High Average Power for Water Wave Energy Harvesting
    An, Jie
    Wang, Zi Ming
    Jiang, Tao
    Liang, Xi
    Wang, Zhong Lin
    ADVANCED FUNCTIONAL MATERIALS, 2019, 29 (39)
  • [29] Triboelectric Nanogenerator Network Integrated with Charge Excitation Circuit for Effective Water Wave Energy Harvesting
    Liang, Xi
    Jiang, Tao
    Feng, Yawei
    Lu, Pinjing
    An, Jie
    Wang, Zhong Lin
    ADVANCED ENERGY MATERIALS, 2020, 10 (40)
  • [30] Largely enhanced triboelectric nanogenerator for efficient harvesting of water wave energy by soft contacted structure
    Cheng, Ping
    Guo, Hengyu
    Wen, Zhen
    Zhang, Chunlei
    Yin, Xing
    Li, Xinyuan
    Liu, Di
    Song, Weixing
    Sun, Xuhui
    Wang, Jie
    Wang, Zhong Lin
    NANO ENERGY, 2019, 57 : 432 - 439