Structural Optimization of Triboelectric Nanogenerator for Harvesting Water Wave Energy

被引:198
|
作者
Jiang, Tao [1 ]
Zhang, Li Min [1 ]
Chen, Xiangyu [1 ]
Han, Chang Bao [1 ]
Tang, Wei [1 ]
Zhang, Chi [1 ]
Xu, Liang [1 ]
Wang, Zhong Lin [1 ,2 ]
机构
[1] Chinese Acad Sci, Beijing Inst Nanoenergy & Nanosyst, Beijing 100083, Peoples R China
[2] Georgia Inst Technol, Sch Mat Sci & Engn, Atlanta, GA 30332 USA
基金
中国国家自然科学基金;
关键词
triboelectric nanogenerator; water wave energy; structural optimization; blue energy; ELECTROSTATIC-INDUCTION; CONVERSION EFFICIENCY; MODE; CONTACT; ELECTRODE;
D O I
10.1021/acsnano.5b06372
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Ocean waves are one of the most abundant energy sources on earth, but harvesting such energy is rather challenging due to various limitations of current technologies. Recently, networks formed by triboelectric nanogenerator (TENG) have been proposed as a promising technology for harvesting water wave energy. In this work, a basic unit for the TENG network was studied and optimized, which has a box structure composed of walls made of TENG composed of a wavy-structured Cu-Kapton-Cu film and two FEP thin films, with a metal ball enclosed inside. By combination of the theoretical calculations and experimental studies, the output performances of the TENG unit were investigated for various structural parameters, such as the size, mass, or number of the metal balls. From the viewpoint of theory, the output characteristics of TENG during its collision with the ball were numerically calculated by the finite element method and interpolation method, and there exists an optimum ball size or mass to reach maximized output power and electric energy. Moreover, the theoretical results were well verified by the experimental tests. The present work could provide guidance for structural optimization of wavy-structured TENGs for effectively harvesting water wave energy toward the dream of large-scale blue energy.
引用
收藏
页码:12562 / 12572
页数:11
相关论文
共 50 条
  • [1] Spring-assisted triboelectric nanogenerator for efficiently harvesting water wave energy
    Jiang, Tao
    Yao, Yanyan
    Xu, Liang
    Zhang, Limin
    Xiao, Tianxiao
    Wang, Zhong Lin
    NANO ENERGY, 2017, 31 : 560 - 567
  • [2] Charging System Optimization of Triboelectric Nanogenerator for Water Wave Energy Harvesting and Storage
    Yao, Yanyan
    Jiang, Tao
    Zhang, Limin
    Chen, Xiangyu
    Gao, Zhenliang
    Wang, Zhong Lin
    ACS APPLIED MATERIALS & INTERFACES, 2016, 8 (33) : 21398 - 21406
  • [3] Torus structured triboelectric nanogenerator array for water wave energy harvesting
    Liu, Wenbo
    Xu, Liang
    Bu, Tianzhao
    Yang, Hang
    Liu, Guoxu
    Li, Wenjian
    Pang, Yaokun
    Hu, Chuxiong
    Zhang, Chi
    Cheng, Tinghai
    NANO ENERGY, 2019, 58 : 499 - 507
  • [4] A Spherical Hybrid Triboelectric Nanogenerator for Enhanced Water Wave Energy Harvesting
    Lee, Kwangseok
    Lee, Jeong-won
    Kim, Kihwan
    Yoo, Donghyeon
    Kim, Dong Sung
    Hwang, Woonbong
    Song, Insang
    Sim, Jae-Yoon
    MICROMACHINES, 2018, 9 (11):
  • [5] Silicone-Based Triboelectric Nanogenerator for Water Wave Energy Harvesting
    Xiao, Tian Xiao
    Jiang, Tao
    Zhu, Jian Xiong
    Liang, Xi
    Xu, Liang
    Shao, Jia Jia
    Zhang, Chun Lei
    Wang, Jie
    Wang, Zhong Lin
    ACS APPLIED MATERIALS & INTERFACES, 2018, 10 (04) : 3616 - 3623
  • [6] Magnets Assisted Triboelectric Nanogenerator for Harvesting Water Wave Energy
    Ouyang, Ri
    Miao, Juan
    Wu, Tao
    Chen, Jiajia
    Sun, Chengfu
    Chu, Jing
    Chen, Dingming
    Li, Xin
    Xue, Hao
    ADVANCED MATERIALS TECHNOLOGIES, 2022, 7 (09):
  • [7] Toward the blue energy dream by triboelectric nanogenerator networks
    Wang, Zhong Lin
    Jiang, Tao
    Xu, Liang
    NANO ENERGY, 2017, 39 : 9 - 23
  • [8] Triboelectric Nanogenerator Networks Integrated with Power Management Module for Water Wave Energy Harvesting
    Hang, Xi
    Jiang, Tao
    Liu, Guoxu
    Xiao, Tianxiao
    Xu, Liang
    Li, Wei
    Xi, Fengben
    Zhang, Chi
    Wang, Zhong Lin
    ADVANCED FUNCTIONAL MATERIALS, 2019, 29 (41)
  • [9] Multilayer wavy-structured robust triboelectric nanogenerator for harvesting water wave energy
    Zhang, Li Min
    Han, Chang Bao
    Jiang, Tao
    Zhou, Tao
    Li, Xiao Hui
    Zhang, Chi
    Wang, Zhong Lin
    NANO ENERGY, 2016, 22 : 87 - 94
  • [10] UFO-Shaped Integrated Triboelectric Nanogenerator for Water Wave Energy Harvesting
    Wu, Shishuo
    Yang, Jiahong
    Wang, Yifei
    Liu, Bin
    Xiong, Yao
    Jiao, Haishuang
    Liu, Yang
    Bao, Rongrong
    Wang, Zhong Lin
    Sun, Qijun
    ADVANCED SUSTAINABLE SYSTEMS, 2023, 7 (09)