On numerical continuation of families of periodic orbits in a parametric potential

被引:9
作者
Lara, M [1 ]
机构
[1] OBSERV ARMADA,E-11110 SAN FERNANDO,SPAIN
关键词
Algorithms - Degrees of freedom (mechanics) - Differential equations - Equations of motion - Integral equations - Integration - Mathematical models - Orbits - Polynomials - Variational techniques;
D O I
10.1016/0093-6413(96)00025-0
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
[No abstract available]
引用
收藏
页码:291 / 298
页数:8
相关论文
共 12 条
[1]   ON THE FAMILIES OF PERIODIC-ORBITS WHICH BIFURCATE FROM THE CIRCULAR SITNIKOV MOTIONS [J].
BELBRUNO, E ;
LLIBRE, J ;
OLLE, M .
CELESTIAL MECHANICS & DYNAMICAL ASTRONOMY, 1994, 60 (01) :99-129
[2]   Dynamical systems with two degrees of freedom [J].
Birkhoff, George D. .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1917, 18 (1-4) :199-300
[3]  
CARANICOLAS ND, 1994, ASTRON ASTROPHYS, V287, P752
[4]  
CARANICOLAS ND, 1993, ASTRON ASTROPHYS, V267, P388
[5]   PERIODIC MOTION IN PERTURBED ELLIPTIC OSCILLATORS [J].
CARANICOLAS, ND ;
INNANEN, KA .
ASTRONOMICAL JOURNAL, 1992, 103 (04) :1308-1312
[6]   NATURAL FAMILIES OF PERIODIC ORBITS [J].
DEPRIT, A ;
HENRARD, J .
ASTRONOMICAL JOURNAL, 1967, 72 (02) :158-&
[7]   APPLICABILITY OF 3 INTEGRAL OF MOTION - SOME NUMERICAL EXPERIMENTS [J].
HENON, M ;
HEILES, C .
ASTRONOMICAL JOURNAL, 1964, 69 (01) :73-&
[8]   A PERTURBATION METHOD FOR PROBLEMS WITH 2 CRITICAL ARGUMENTS [J].
HENRARD, J ;
LEMAITRE, A .
CELESTIAL MECHANICS, 1986, 39 (03) :213-238
[9]   A SEMI-NUMERICAL PERTURBATION METHOD FOR SEPARABLE HAMILTONIAN SYSTEMS [J].
Henrard, Jacques .
CELESTIAL MECHANICS & DYNAMICAL ASTRONOMY, 1990, 49 (01) :43-67
[10]   NUMERICAL CONTINUATION OF FAMILIES OF FROZEN ORBITS IN THE ZONAL PROBLEM OF ARTIFICIAL-SATELLITE THEORY [J].
LARA, M ;
DEPRIT, A ;
ELIPE, A .
CELESTIAL MECHANICS & DYNAMICAL ASTRONOMY, 1995, 62 (02) :167-181