Minimisers of the Allen-Cahn equation and the asymptotic Plateau problem on hyperbolic groups

被引:0
作者
Mramor, Blaz [1 ]
机构
[1] Univ Freiburg, Freiburg Inst Advance Sci FRIAS, Freiburg, Germany
来源
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE | 2018年 / 35卷 / 03期
关键词
Analysis on metric spaces; Hyperbolic groups; Minimisers of variational nonlinear elliptic equations; Allen-Cahn equation; Asymptotic Plateau problem; NEGATIVE CURVATURE; DIRICHLET PROBLEM; MINIMAL HYPERSURFACES; RIEMANNIAN-MANIFOLDS; ELLIPTIC-EQUATIONS; HARMONIC-FUNCTIONS; PHASE-TRANSITIONS; SPACE; INFINITY; LIMIT;
D O I
10.1016/j.anihpc.2017.07.004
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We investigate the existence of non-constant uniformly-bounded minimal solutions of the Allen-Cahn equation on a Gromov-hyperbolic group. We show that whenever the Laplace term in the Allen-Cahn equation is small enough, there exist minimal solutions satisfying a large class of prescribed asymptotic behaviours. For a phase field model on a hyperbolic group, such solutions describe phase transitions that asymptotically converge towards prescribed phases, given by asymptotic directions. In the spirit of de Giorgi's conjecture, we then fix an asymptotic behaviour and let the Laplace term go to zero. In the limit we obtain a solution to a corresponding asymptotic Plateau problem by F-convergence. (C) 2017 Elsevier Masson SAS. All rights reserved.
引用
收藏
页码:687 / 711
页数:25
相关论文
共 38 条
[1]  
ANCONA A, 1990, LECT NOTES MATH, V1427, P1
[2]   COMPLETE MINIMAL HYPERSURFACES IN HYPERBOLIC N-MANIFOLDS [J].
ANDERSON, MT .
COMMENTARII MATHEMATICI HELVETICI, 1983, 58 (02) :264-290
[3]   POSITIVE HARMONIC-FUNCTIONS ON COMPLETE MANIFOLDS OF NEGATIVE CURVATURE [J].
ANDERSON, MT ;
SCHOEN, R .
ANNALS OF MATHEMATICS, 1985, 121 (03) :429-461
[4]  
ANDERSON MT, 1983, J DIFFER GEOM, V18, P701
[5]  
[Anonymous], 1987, ESSAYS GROUP THEORY, DOI 10.1007/978-1-4613-9586-7_3
[6]  
[Anonymous], 1992, WORD PROCESSING GROU, DOI DOI 10.1201/9781439865699
[7]  
[Anonymous], 1991, GROUP THEORY GEOMETR
[8]   Growth tightness for word hyperbolic groups [J].
Arzhantseva, GN ;
Lysenok, IG .
MATHEMATISCHE ZEITSCHRIFT, 2002, 241 (03) :597-611
[9]   CHAOTIC TRAJECTORIES IN THE STANDARD MAP - THE CONCEPT OF ANTIINTEGRABILITY [J].
AUBRY, S ;
ABRAMOVICI, G .
PHYSICA D-NONLINEAR PHENOMENA, 1990, 43 (2-3) :199-219
[10]   CANTORI FOR MULTIHARMONIC MAPS [J].
BAESENS, C ;
MACKAY, RS .
PHYSICA D, 1993, 69 (1-2) :59-76