Facile synthesis of mesoporous MnO2/C spheres for supercapacitor electrodes

被引:36
作者
Pan, Yanmei
Mei, Zhousheng
Yang, Zeheng [1 ]
Zhang, Weixin
Pei, Bo
Yao, Hongxu
机构
[1] Hefei Univ Technol, Sch Chem Engn, Hefei 230009, Anhui, Peoples R China
基金
中国国家自然科学基金;
关键词
Synthesis; MnO2/C; Mesoporous sphere; Supercapacitor; MANGANESE OXIDE; CAPACITIVE PROPERTIES; COMPOSITE; PERFORMANCE; DEPOSITION; DIOXIDE; GROWTH;
D O I
10.1016/j.cej.2013.04.069
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
A mesoporous MnO2/C composite with spherical morphology and large surface area of 324 m(2)/g has been successfully prepared at room temperature by a redox process between KMnO4 and carbon spheres which were hydrothermally synthesized and used without any previous activation treatment. The composition, morphology and structure of the obtained material are examined by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), field emission scanning electron microscopy (FESEM) and nitrogen adsorption-desorption. Supercapacitive performance of the MnO2/C samples as active electrode materials has been evaluated by cyclic voltammetry (CV) and galvanostatic charge-discharge. The results of electrochemical tests indicate that the mesoporous MnO2/C composite with 72.86 wt% of MnO2 exhibits a high specific capacitance of 383 F/g at 2 mV/s and demonstrates a superior long-term cyclic stability, with specific capacitance retention about 82.2% of the initial value after 1000 cycles. (C) 2013 Elsevier B.V. All rights reserved.
引用
收藏
页码:397 / 403
页数:7
相关论文
共 32 条
[1]   Flexible Zn2SnO4/MnO2 Core/Shell Nanocable-Carbon Microfiber Hybrid Composites for High-Performance Supercapacitor Electrodes [J].
Bao, Lihong ;
Zang, Jianfeng ;
Li, Xiaodong .
NANO LETTERS, 2011, 11 (03) :1215-1220
[2]   Variations in MnO2 electrodeposition for electrochemical capacitors [J].
Broughton, JN ;
Brett, MJ .
ELECTROCHIMICA ACTA, 2005, 50 (24) :4814-4819
[3]  
Cui D.Y., 2012, FUNCT MATER LETT, V5, P5
[4]   MILD SOLUTION ROUTE TO MIXED-PHASE MnO2 WITH ENHANCED ELECTROCHEMICAL CAPACITANCE [J].
Cui, Deyuan ;
Gao, Kun ;
Lu, Pai ;
Yang, Hong ;
Liu, Yinong ;
Xue, Dongfeng .
FUNCTIONAL MATERIALS LETTERS, 2011, 4 (01) :57-60
[5]   Effect of crystallographic structure of MnO2 on its electrochemical capacitance properties [J].
Devaraj, S. ;
Munichandraiah, N. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2008, 112 (11) :4406-4417
[6]   A novel chemical synthesis of Mn3O4 thin film and its stepwise conversion into birnessite MnO2 during super capacitive studies [J].
Dubal, D. P. ;
Dhawale, D. S. ;
Salunkhe, R. R. ;
Lokhande, C. D. .
JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 2010, 647 (01) :60-65
[7]   Incorporation of homogeneous, nanoscale MnO2 within ultraporous carbon structures via self-limiting electroless deposition:: Implications for electrochemical capacitors [J].
Fischer, Anne E. ;
Pettigrew, Katherine A. ;
Rolison, Debra R. ;
Stroud, Rhonda M. ;
Long, Jeffrey W. .
NANO LETTERS, 2007, 7 (02) :281-286
[8]   Design and Synthesis of Hierarchical MnO2 Nanospheres/Carbon Nanotubes/Conducting Polymer Ternary Composite for High Performance Electrochemical Electrodes [J].
Hou, Ye ;
Cheng, Yingwen ;
Hobson, Tyler ;
Liu, Jie .
NANO LETTERS, 2010, 10 (07) :2727-2733
[9]   Graphene nanoplate-MnO2 composites for supercapacitors: a controllable oxidation approach [J].
Huang, Huajie ;
Wang, Xin .
NANOSCALE, 2011, 3 (08) :3185-3191
[10]   Preparation of ultrafine MnO2 powders by the solid state method reaction of KMnO4 with Mn(II) salts at room temperature [J].
Li, QW ;
Luo, G ;
Li, J ;
Xia, X .
JOURNAL OF MATERIALS PROCESSING TECHNOLOGY, 2003, 137 (1-3) :25-29