Chaos and hyperchaos in the fractional-order Rossler equations

被引:568
|
作者
Li, CG [1 ]
Chen, GR
机构
[1] Univ Elect Sci & Technol China, Coll Elect Engn, Inst Elect Syst, Chengdu 610054, Peoples R China
[2] City Univ Hong Kong, Dept Elect Engn, Kowloon, Hong Kong, Peoples R China
基金
中国国家自然科学基金;
关键词
chaos; hyperchaos; fractional order; Rossler equation;
D O I
10.1016/j.physa.2004.04.113
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The dynamics of fractional-order systems have attracted increasing attentions in recent years. In this paper, we numerically study the chaotic behaviors in the fractional-order Rossler equations. We found that chaotic behaviors exist in the fractional-order Rossler equation with orders less than 3, and hyperchaos exists in the fractional-order Rossler hyperchaotic equation with order less than 4. The lowest orders we found for chaos and hyperchaos to exist in such systems are 2.4 and 3.8, respectively. Period doubling routes to chaos in the fractional-order Rossler equation are also found. (C) 2004 Elsevier B.V. All rights reserved.
引用
收藏
页码:55 / 61
页数:7
相关论文
共 50 条
  • [1] HYPERCHAOS IN THE FRACTIONAL-ORDER ROSSLER SYSTEM WITH LOWEST-ORDER
    Cafagna, Donato
    Grassi, Giuseppe
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2009, 19 (01): : 339 - 347
  • [2] Chaos in a fractional-order Rossler system
    Zhang, Weiwei
    Zhou, Shangbo
    Li, Hua
    Zhu, Hao
    CHAOS SOLITONS & FRACTALS, 2009, 42 (03) : 1684 - 1691
  • [3] Chaos and hyperchaos in fractional-order cellular neural networks
    Huang, Xia
    Zhao, Zhao
    Wang, Zhen
    Li, Yuxia
    NEUROCOMPUTING, 2012, 94 : 13 - 21
  • [4] A Novel Fractional-Order System: Chaos, Hyperchaos and Applications to Linear Control
    Matouk, Ahmed Ezzat
    JOURNAL OF APPLIED AND COMPUTATIONAL MECHANICS, 2021, 7 (02): : 701 - 714
  • [5] A new fractional-order discrete BVP oscillator model with coexisting chaos and hyperchaos
    Tianming Liu
    Jun Mou
    Santo Banerjee
    Yinghong Cao
    Xintong Han
    Nonlinear Dynamics, 2021, 106 : 1011 - 1026
  • [6] A new fractional-order discrete BVP oscillator model with coexisting chaos and hyperchaos
    Liu, Tianming
    Mou, Jun
    Banerjee, Santo
    Cao, Yinghong
    Han, Xintong
    NONLINEAR DYNAMICS, 2021, 106 (01) : 1011 - 1026
  • [7] Hyperchaos-chaos-hyperchaos transition in modified Rossler systems
    Nikolov, S
    Clodong, S
    CHAOS SOLITONS & FRACTALS, 2006, 28 (01) : 252 - 263
  • [8] The synchronization of fractional-order Rossler hyperchaotic systems
    Yu, Yongguang
    Li, Han-Xiong
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2008, 387 (5-6) : 1393 - 1403
  • [9] The synchronisation of fractional-order hyperchaos compound system
    Naeimadeen Noghredani
    Aminreza Riahi
    Naser Pariz
    Ali Karimpour
    Pramana, 2018, 90
  • [10] The synchronisation of fractional-order hyperchaos compound system
    Noghredani, Naeimadeen
    Riahi, Aminreza
    Pariz, Naser
    Karimpour, Ali
    PRAMANA-JOURNAL OF PHYSICS, 2018, 90 (02):