Optimal Convergence Rates for the Strong Solutions to the Compressible MHD Equations with Potential Force

被引:0
作者
Ouyang, Miao [1 ]
机构
[1] Xiamen Univ Technol, Dept Math, Xiamen 361012, Fujian, Peoples R China
关键词
NAVIER-STOKES EQUATIONS; MACH NUMBER LIMIT; MAGNETOHYDRODYNAMIC EQUATIONS; GLOBAL EXISTENCE; CONTINUOUS DEPENDENCE; CLASSICAL-SOLUTIONS; SMOOTH SOLUTIONS; WEAK SOLUTIONS; MOTION; DOMAIN;
D O I
10.1155/2019/6710508
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In this paper, the large-time behavior of solutions to the Cauchy problem for the 3D compressible MHD equations is considered with the effect of external force. We construct the global unique solution with the small initial data near the stationary profile. The optimal Lp-L2(1p2) time decay rates of the solution to the system are built in multifrequency decompositions.
引用
收藏
页数:12
相关论文
共 29 条
[1]  
[Anonymous], 1985, SOBOLEV SPACES
[2]   Existence and continuous dependence of large solutions for the magnetohydrodynamic equations [J].
Chen, GQ ;
Wang, DH .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2003, 54 (04) :608-632
[3]   Global solutions of nonlinear magnetohydrodynamics with large initial data [J].
Chen, GQ ;
Wang, DH .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2002, 182 (02) :344-376
[4]   Global existence and convergence rates of smooth solutions for the compressible magnetohydrodynamic equations [J].
Chen, Qing ;
Tan, Zhong .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2010, 72 (12) :4438-4451
[5]   DECAY-ESTIMATES FOR THE COMPRESSIBLE NAVIER-STOKES EQUATIONS IN UNBOUNDED-DOMAINS [J].
DECKELNICK, K .
MATHEMATISCHE ZEITSCHRIFT, 1992, 209 (01) :115-130
[6]   LOW MACH NUMBER LIMIT FOR THE COMPRESSIBLE MAGNETOHYDRODYNAMIC EQUATIONS IN A BOUNDED DOMAIN FOR ALL TIME [J].
Dou, Changsheng ;
Ju, Qiangchang .
COMMUNICATIONS IN MATHEMATICAL SCIENCES, 2014, 12 (04) :661-679
[7]   Optimal convergence rates for the compressible Navier-Stokes equations with potential forces [J].
Duan, Renjun ;
Ukai, Seiji ;
Yang, Tong ;
Zhao, Huijiang .
MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2007, 17 (05) :737-758
[8]   GLOBAL SMOOTH FLOWS FOR THE COMPRESSIBLE EULER-MAXWELL SYSTEM. THE RELAXATION CASE [J].
Duan, Renjun .
JOURNAL OF HYPERBOLIC DIFFERENTIAL EQUATIONS, 2011, 8 (02) :375-413
[9]   Vanishing shear viscosity limit in the magnetohydrodynamic equations [J].
Fan, Jishan ;
Jiang, Song ;
Nakamura, Gen .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2007, 270 (03) :691-708
[10]   DISSIPATIVE SOLUTIONS AND THE INCOMPRESSIBLE INVISCID LIMITS OF THE COMPRESSIBLE MAGNETOHYDRODYNAMIC SYSTEM IN UNBOUNDED DOMAINS [J].
Feireisl, Eduard ;
Novotny, Antonin ;
Sun, Yongzhong .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2014, 34 (01) :121-143