Arnold Diffusion of Charged Particles in ABC Magnetic Fields

被引:3
|
作者
Luque, Alejandro [1 ]
Peralta-Salas, Daniel [1 ]
机构
[1] Inst Ciencias Matemat, Consejo Super Invest Cientif, Madrid 28049, Spain
基金
欧洲研究理事会;
关键词
Motion of charges in magnetic fields; Hamiltonian dynamical systems; Arnold diffusion; Global instability; Heteroclinic connections; UNSTABLE HAMILTONIAN-SYSTEMS; 3-BODY PROBLEM; UNBOUNDED ENERGY; TRANSITION TORI; RESONANCES; FLOWS; EXISTENCE; EVOLUTION; ORBITS; GROWTH;
D O I
10.1007/s00332-016-9349-y
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove the existence of diffusing solutions in the motion of a charged particle in the presence of ABC magnetic fields. The equations of motion are modeled by a 3DOF Hamiltonian system depending on two parameters. For small values of these parameters, we obtain a normally hyperbolic invariant manifold and we apply the so-called geometric methods for a priori unstable systems developed by A. Delshams, R. de la Llave and T.M. Seara. We characterize explicitly sufficient conditions for the existence of a transition chain of invariant tori having heteroclinic connections, thus obtaining global instability (Arnold diffusion). We also check the obtained conditions in a computer-assisted proof. ABC magnetic fields are the simplest force-free-type solutions of the magnetohydrodynamics equations with periodic boundary conditions, and can be considered as an elementary model for the motion of plasma-charged particles in a tokamak.
引用
收藏
页码:721 / 774
页数:54
相关论文
共 50 条
  • [1] Arnold Diffusion of Charged Particles in ABC Magnetic Fields
    Alejandro Luque
    Daniel Peralta-Salas
    Journal of Nonlinear Science, 2017, 27 : 721 - 774
  • [2] Arnold Diffusion in a Model of Dissipative System
    Akingbade, Samuel W.
    Gidea, Marian
    M-Seara, Tere
    SIAM JOURNAL ON APPLIED DYNAMICAL SYSTEMS, 2023, 22 (03) : 1983 - 2023
  • [3] Motion of charged particles in magnetic fields created by symmetric configurations of wires
    Aguirre, Jacobo
    Luque, Alejandro
    Peralta-Salas, Daniel
    PHYSICA D-NONLINEAR PHENOMENA, 2010, 239 (10) : 654 - 674
  • [4] On the Arnold Diffusion Mechanism in Medium Earth Orbit
    Alessi, Elisa Maria
    Baldoma, Inmaculada
    Giralt, Mar
    Guardia, Marcel
    JOURNAL OF NONLINEAR SCIENCE, 2025, 35 (01)
  • [5] Arnold diffusion for nearly integrable Hamiltonian systems
    Cheng, Chong-Qing
    Xue, Jinxin
    SCIENCE CHINA-MATHEMATICS, 2023, 66 (08) : 1649 - 1712
  • [6] Arnold diffusion for a complete family of perturbations
    Delshams, Amadeu
    Schaefer, Rodrigo G.
    REGULAR & CHAOTIC DYNAMICS, 2017, 22 (01) : 78 - 108
  • [7] ARNOLD DIFFUSION IN MULTIDIMENSIONAL CONVEX BILLIARDS
    Clarke, Andrew
    Turaev, Dmitry
    DUKE MATHEMATICAL JOURNAL, 2023, 172 (10) : 1813 - 1878
  • [8] Arnold's mechanism of diffusion in the spatial circular restricted three-body problem: A semi-analytical argument
    Delshams, Amadeu
    Gidea, Marian
    Roldan, Pablo
    PHYSICA D-NONLINEAR PHENOMENA, 2016, 334 : 29 - 48
  • [9] The speed of Arnold diffusion
    Efthymiopoulos, C.
    Harsoula, M.
    PHYSICA D-NONLINEAR PHENOMENA, 2013, 251 : 19 - 38
  • [10] Topological shadowing methods in arnold diffusion: weak torsion and multiple time scales
    Clarke, Andrew
    Fejoz, Jacques
    Guardia, Marcel
    NONLINEARITY, 2023, 36 (01) : 426 - 457