Computationally efficient multidimensional analysis of complex flow cytometry data using second order polynomial histograms

被引:7
作者
Zaunders, John [1 ,2 ]
Jing, Junmei [3 ]
Leipold, Michael [4 ]
Maecker, Holden [4 ]
Kelleher, Anthony D. [1 ,2 ]
Koch, Inge [5 ]
机构
[1] St Vincents Hosp, St Vincents Ctr Appl Med Res, Darlinghurst, NSW 2010, Australia
[2] UNSW Australia, Kirby Inst, Kensington, NSW 2052, Australia
[3] Australia Natl Univ, Inst Math Sci, Ctr Bioinformat Sci, Canberra, ACT 2600, Australia
[4] Stanford Univ, Inst Immun Transplantat & Infect, Sch Med, Stanford, CA 94305 USA
[5] Univ Adelaide, Sch Math Sci, Adelaide, SA 5005, Australia
基金
英国医学研究理事会;
关键词
data analysis; clustering; high dimensions; complex data; CD4(+) T-LYMPHOCYTES; CELLS; INFECTION; DENSITY; CLASSIFICATION; MEMORY; IDENTIFICATION; EXPRESSION; DISORDERS; RECEPTORS;
D O I
10.1002/cyto.a.22704
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Many methods have been described for automated clustering analysis of complex flow cytometry data, but so far the goal to efficiently estimate multivariate densities and their modes for a moderate number of dimensions and potentially millions of data points has not been attained. We have devised a novel approach to describing modes using second order polynomial histogram estimators (SOPHE). The method divides the data into multivariate bins and determines the shape of the data in each bin based on second order polynomials, which is an efficient computation. These calculations yield local maxima and allow joining of adjacent bins to identify clusters. The use of second order polynomials also optimally uses wide bins, such that in most cases each parameter (dimension) need only be divided into 4-8 bins, again reducing computational load. We have validated this method using defined mixtures of up to 17 fluorescent beads in 16 dimensions, correctly identifying all populations in data files of 100,000 beads in <10 s, on a standard laptop. The method also correctly clustered granulocytes, lymphocytes, including standard T, B, and NK cell subsets, and monocytes in 9-color stained peripheral blood, within seconds. SOPHE successfully clustered up to 36 subsets of memory CD4 T cells using differentiation and trafficking markers, in 14-color flow analysis, and up to 65 subpopulations of PBMC in 33-dimensional CyTOF data, showing its usefulness in discovery research. SOPHE has the potential to greatly increase efficiency of analysing complex mixtures of cells in higher dimensions. (c) 2015 International Society for Advancement of Cytometry
引用
收藏
页码:44 / 58
页数:15
相关论文
共 49 条
  • [1] Aghaeepour N, 2013, NAT METHODS, V10, P228, DOI [10.1038/NMETH.2365, 10.1038/nmeth.2365]
  • [2] Rapid Cell Population Identification in Flow Cytometry Data
    Aghaeepour, Nima
    Nikolic, Radina
    Hoos, Holger H.
    Brinkman, Ryan R.
    [J]. CYTOMETRY PART A, 2011, 79A (01) : 6 - 13
  • [3] Baggerly KA, 2001, CYTOMETRY, V45, P141, DOI 10.1002/1097-0320(20011001)45:2<141::AID-CYTO1156>3.0.CO
  • [4] 2-M
  • [5] Bashashati Ali, 2009, Advances in Bioinformatics, V2009, P584603, DOI 10.1155/2009/584603
  • [6] Single-Cell Mass Cytometry of Differential Immune and Drug Responses Across a Human Hematopoietic Continuum
    Bendall, Sean C.
    Simonds, Erin F.
    Qiu, Peng
    Amir, El-ad D.
    Krutzik, Peter O.
    Finck, Rachel
    Bruggner, Robert V.
    Melamed, Rachel
    Trejo, Angelica
    Ornatsky, Olga I.
    Balderas, Robert S.
    Plevritis, Sylvia K.
    Sachs, Karen
    Pe'er, Dana
    Tanner, Scott D.
    Nolan, Garry P.
    [J]. SCIENCE, 2011, 332 (6030) : 687 - 696
  • [7] CD4+ T cell depletion during all stages of HIV disease occurs predominantly in the gastrointestinal tract
    Brenchley, JM
    Schacker, TW
    Ruff, LE
    Price, DA
    Taylor, JH
    Beilman, GJ
    Nguyen, PL
    Khoruts, A
    Larson, M
    Haase, AT
    Douek, DC
    [J]. JOURNAL OF EXPERIMENTAL MEDICINE, 2004, 200 (06) : 749 - 759
  • [8] A chromatic explosion: the development and future of multiparameter flow cytometry
    Chattopadhyay, Pratip K.
    Hogerkorp, Carl-Magnus
    Roederer, Mario
    [J]. IMMUNOLOGY, 2008, 125 (04) : 441 - 449
  • [9] A new automated flow cytometry data analysis approach for the diagnostic screening of neoplastic B-cell disorders in peripheral blood samples with absolute lymphocytosis
    Costa, E. S.
    Arroyo, M. E.
    Pedreira, C. E.
    Garcia-Marcos, M. A.
    Tabernero, M. D.
    Almeida, J.
    Orfao, A.
    [J]. LEUKEMIA, 2006, 20 (07) : 1221 - 1230
  • [10] Automated pattern-guided principal component analysis vs expert-based immunophenotypic classification of B-cell chronic lymphoproliferative disorders: a step forward in the standardization of clinical immunophenotyping
    Costa, E. S.
    Pedreira, C. E.
    Barrena, S.
    Lecrevisse, Q.
    Flores, J.
    Quijano, S.
    Almeida, J.
    del Carmen Garcia-Macias, M.
    Bottcher, S.
    Van Dongen, J. J. M.
    Orfao, A.
    [J]. LEUKEMIA, 2010, 24 (11) : 1927 - 1933