Pointwise convergence of some multiple ergodic averages

被引:11
作者
Donoso, Sebastian [1 ,3 ]
Sun, Wenbo [2 ]
机构
[1] Hebrew Univ Jerusalem, Einstein Inst Math, IL-91904 Jerusalem, Israel
[2] Ohio State Univ, Dept Math, 231 West 18th Ave, Columbus, OH 43210 USA
[3] Univ OHiggins, Inst Ciencias Ingn, Rancagua, Chile
基金
美国国家科学基金会;
关键词
Pointwise convergence; Cubic averages; Topological models; 2 COMMUTING TRANSFORMATIONS; NORM CONVERGENCE; SYSTEMS; RECURRENCE; EXTENSIONS; CUBES;
D O I
10.1016/j.aim.2018.03.022
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show that for every ergodic system (X, mu, T-1 , . . . , T-d) with commuting transformations, the average 1/Nd+1 Sigma(0 <= n1 ,..., nd <= N-1 )Sigma(0 <= n <= N-1 ) f(1)(T-1(n) Pi(d)(j=1) T(j)(nj)x) f(2)(T-2(n) Pi(d)(j=1)T(j)(ni)x) . . . f(d)(T-d(n) Pi(d)(j=1)T(j)(nj)x) converges for mu-a.e. x Sigma X as N -> infinity. If X is distal, we prove that the average 1/N Sigma(N-1)(n=0) f(1) (T(1)(n)x) f(2) (T(2)(n)x) . . . f(d)(T(d)(n)x) converges for mu-a.e. x is an element of X as N -> infinity. We also establish the pointwise convergence of averages along cubical configurations arising from a system with commuting transformations. Our methods combine the existence of sated and magic extensions introduced by Austin and Host respectively with ideas on topological models by Huang, Shao and Ye. (C) 2018 Elsevier Inc. All rights reserved.
引用
收藏
页码:946 / 996
页数:51
相关论文
共 25 条
[1]   POINTWISE CONVERGENCE OF ERGODIC AVERAGES ALONG CUBES [J].
Assani, I. .
JOURNAL D ANALYSE MATHEMATIQUE, 2010, 110 :241-269
[2]  
Austin T., ARXIV10060491
[3]   Extensions of probability-preserving systems by measurably-varying homogeneous spaces and applications [J].
Austin, Tim .
FUNDAMENTA MATHEMATICAE, 2010, 210 (02) :133-206
[4]   On the norm convergence of non-conventional ergodic averages [J].
Austin, Tim .
ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2010, 30 :321-338
[5]  
Becker Howard, 1996, LONDON MATH SOC LECT, V232
[6]   Multiple recurrence and nilsequences [J].
Bergelson, V ;
Host, B ;
Kra, B ;
Ruzsa, I .
INVENTIONES MATHEMATICAE, 2005, 160 (02) :261-303
[7]  
BOURGAIN J, 1990, J REINE ANGEW MATH, V404, P140
[8]   Pointwise convergence for cubic and polynomial multiple ergodic averages of non-commuting transformations [J].
Chu, Qing ;
Frantzikinakis, Nikos .
ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2012, 32 :877-897
[9]   Multiple recurrence for two commuting transformations [J].
Chu, Qing .
ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2011, 31 :771-792
[10]   Pointwise multiple averages for systems with two commuting transformations [J].
Donoso, Sebastian ;
Sun, Wenbo .
ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2018, 38 :2132-2157