Exploration of GBP2MP Network Performance for Next Generation Using Artificial Neural Network (ANN)

被引:0
|
作者
Verma, Sanjeev [1 ]
Thakur, Anita [1 ]
机构
[1] Amity Univ, Amity Sch Engn & Technol, Noida, India
关键词
Optical passive network; Bit error rate; Artificial neural network; LINKS; GPON;
D O I
10.1007/978-981-10-5427-3_13
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
New era of world needed fast communication network for that optical fiber communication is promising solution. Optical networks are used in closed systems to open systems for various application like video on demand, voice over internet, video conference and real time broadcast. So fast performance criteria prediction of optical fiber network is time and cost saving solution. The aim of this paper is to determine the performance characteristic of Gigabit point to multipoint (GBP2MP) optical fiber network using artificial neural network. In artificial neural model (ANN), the input is frequency and fiber length in kilometres. Performance of optical network checked in term of minimum bit error rate (BER) parameters and results are discussed the performance of optical fiber network (OFN) when varying the length of fiber and frequency respectively.
引用
收藏
页码:123 / 131
页数:9
相关论文
共 50 条
  • [1] Modelling on BLDC Motor Performance Using Artificial Neural Network (ANN)
    Nizam, Muhammad
    Mujianto, Agus
    Triwaloyo, Hery
    Inayati
    PROCEEDINGS OF THE 2013 JOINT INTERNATIONAL CONFERENCE ON RURAL INFORMATION & COMMUNICATION TECHNOLOGY AND ELECTRIC-VEHICLE TECHNOLOGY (RICT & ICEV-T), 2013,
  • [2] Investigate the Photovoltaic (PV) Module Performance Using Artificial Neural Network (ANN)
    Jumaat, Siti Amely Binti
    Crocker, Flora
    Abd Wahab, Mohd Helmy
    Radzi, Nur Hanis Binti Mohammad
    2016 IEEE CONFERENCE ON OPEN SYSTEMS, 2016, : 59 - 64
  • [3] THERMAL PERFORMANCE PREDICTION OF QFN PACKAGES USING ARTIFICIAL NEURAL NETWORK (ANN)
    Law, R. C.
    Cheang, Raymond
    Tan, Y. W.
    Azid, I. A.
    IEMT 2006: 31ST INTERNATIONAL CONFERENCE ON ELECTRONICS MANUFACTURING AND TECHNOLOGY, 2006, : 50 - +
  • [4] On the predictability of next generation mobile network traffic using artificial neural networks
    Loumiotis, I.
    Adamopoulou, E.
    Demestichas, K.
    Stamatiadi, T.
    Theologou, M.
    INTERNATIONAL JOURNAL OF COMMUNICATION SYSTEMS, 2015, 28 (08) : 1484 - 1492
  • [5] Investigating the increase in the specialized performance of athletes using artificial neural network (ANN) exercises
    Ma, Shuzhen
    SCIENTIFIC REPORTS, 2025, 15 (01):
  • [6] Part II: Prediction of the dialysis process performance using Artificial Neural Network (ANN)
    Godini, H. R.
    Ghadrdan, M.
    Omidkhah, M. R.
    Madaeni, S. S.
    DESALINATION, 2011, 265 (1-3) : 11 - 21
  • [7] A [-2]PROPSA-BASED ARTIFICIAL NEURAL NETWORK (ANN) IMPROVES PROSTATE CANCER (PCA) DETECTION: PERFORMANCE OF PROPSA IN AN ARTIFICIAL NEURAL NETWORK
    Stephan, C.
    Cammann, H.
    Deger, S.
    Schrader, M.
    Miller, K.
    Lein, M.
    Jung, K.
    ANTICANCER RESEARCH, 2008, 28 (6B) : 4054 - 4054
  • [8] Optimization of Wind Power Using Artificial Neural Network (ANN)
    Chauhan, Dinesh
    Vig, Sunny
    ADVANCES IN COMMUNICATION, DEVICES AND NETWORKING, 2018, 462 : 233 - 246
  • [9] An approach to seizure detection using an artificial neural network (ANN)
    Webber, WRS
    Lesser, RP
    Richardson, RT
    Wilson, K
    ELECTROENCEPHALOGRAPHY AND CLINICAL NEUROPHYSIOLOGY, 1996, 98 (04): : 250 - 272
  • [10] Diabetes mellitus forecast using artificial neural network (ANN)
    Jaafar, Siti Farhanah Bt
    Ali, Darmawaty Mohd
    2005 ASIAN CONFERENCE ON SENSORS AND THE INTERNATIONAL CONFERENCE ON NEW TECHNIQUES IN PHARMACEUTICAL AND BIOMEDICAL RESEARCH, PROCEEDINGS, 2005, : 135 - 139